Issue 16, 2020

Extraordinarily long diffusion length in PM6:Y6 organic solar cells

Abstract

The PM6:Y6 bulk-heterojunction (BHJ) blend system achieves high short-circuit current (JSC) values in thick photovoltaic junctions. Here we analyse these solar cells to understand the observed independence of the short-circuit current upon photoactive layer thickness. We employ a range of optoelectronic measurements and analyses, including Mott–Schottky analysis, CELIV, photoinduced absorption spectroscopy, mobility measurements and simulations, to conclude that, the invariant photocurrent for the devices with different active layer thicknesses is associated with the Y6's diffusion length exceeding 300 nm in case of a 300 nm thick cell. This is despite unintentional doping that occurs in PM6 and the associated space-charge effect, which is expected to be even more profound upon photogeneration. This extraordinarily long diffusion length – which is an order of magnitude larger than typical values for organics – dominates transport in the flat-band region of thick junctions. Our work suggests that the performance of the doped PM6:Y6 organic solar cells resembles that of inorganic devices with diffusion transport playing a pivotal role. Ultimately, this is expected to be a key requirement for the fabrication of efficient, high-photocurrent, thick organic solar cells.

Graphical abstract: Extraordinarily long diffusion length in PM6:Y6 organic solar cells

Article information

Article type
Paper
Submitted
16 Mar 2020
Accepted
30 Mar 2020
First published
01 Apr 2020

J. Mater. Chem. A, 2020,8, 7854-7860

Extraordinarily long diffusion length in PM6:Y6 organic solar cells

N. Tokmoldin, S. M. Hosseini, M. Raoufi, L. Q. Phuong, O. J. Sandberg, H. Guan, Y. Zou, D. Neher and S. Shoaee, J. Mater. Chem. A, 2020, 8, 7854 DOI: 10.1039/D0TA03016C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements