Issue 38, 2020

Measuring stimulation and inhibition of intracellular nitric oxide production in SIM-A9 microglia using microfluidic single-cell analysis

Abstract

Chronic neuroinflammation has long been considered to be a central factor in accelerating the progression of neurodegenerative diseases such as Alzheimer's diseases, Parkinson's disease and chronic traumatic encephalopathy. Under pathological conditions microglia produce inflammatory signaling molecules, such as nitric oxide (NO), that can damage DNA and proteins and ultimately induce neuronal apoptosis. One strategy for treating neurodegenerative diseases is to specifically target NO production through inhibition of inducible nitric oxide synthase (iNOS). However, accurately measuring changes in microglial NO production in response to potential therapeutics is challenging due to NO's short half-life and microglial heterogeneity. In this paper we report the application of a microfluidic device for the high-throughput measurement of intracellular NO in SIM-A9 microglial cells. NO production was measured in response to treatment with lipopolysaccharides (LPS) and interferon gamma (IFN-γ) with and without a potent iNOS inhibitor (1400 W dihydrochloride). Cells were labeled with a fluorogenic NO probe, 4-amino-5-methylamino-2′,7′-difluorofluoescein diacetate (DAF-FM DA), and 6-carboxyfluorescein diacetate (6-CFDA) as an internal standard. Separation and quantitation of intracellular NO was achieved using microchip electrophoresis and laser induced fluorescence detection (LIF). Statistical analysis suggests that the populations fit a lognormal distribution and are better represented by their geometric mean values. Comparison of the geometric means indicated a 1.6-fold increase in NO production between untreated and stimulated cells and a decrease by a factor of approximately 0.5 comparing stimulated and inhibited cells. Additionally, we report experimental data demonstrating the improvement in the sensitivity of our integrated optical fiber-based detection system through the use of refractive index matching gel.

Graphical abstract: Measuring stimulation and inhibition of intracellular nitric oxide production in SIM-A9 microglia using microfluidic single-cell analysis

Article information

Article type
Paper
Submitted
10 Jun 2018
Accepted
21 Aug 2020
First published
27 Aug 2020

Anal. Methods, 2020,12, 4665-4673

Author version available

Measuring stimulation and inhibition of intracellular nitric oxide production in SIM-A9 microglia using microfluidic single-cell analysis

J. Sibbitts and C. T. Culbertson, Anal. Methods, 2020, 12, 4665 DOI: 10.1039/D0AY01578D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements