Issue 32, 2019

Distinguishing failure modes in oligomeric polymer nanopillars

Abstract

Brittle failure is ubiquitous in amorphous materials that are sufficiently cooled below their glass transition temperature, Tg. This catastrophic failure mode is limiting for amorphous materials in many applications, and many fundamental questions surrounding it remain poorly understood. Two challenges that prevent a more fundamental understanding of the transition between a ductile response at temperatures near Tg to brittle failure at lower temperatures are (i) a lack of computationally inexpensive molecular models that capture the failure modes observed in experiments and (ii) the lack of quantitative metrics that can distinguish various failure mechanisms. In this work, we use molecular dynamics simulations to capture ductile-to-brittle transition in glass-forming oligomeric polymer systems where we systematically vary both the temperature relative to Tg and the form of the interaction potential to induce a variety of failure modes. We characterized the effects of this new potential on macroscopic mechanical properties as well as microscopic structural and dynamical response during deformation. Finally, we develop several quantitative metrics to distinguish between different failure modes, and we find that the transition between catastrophic brittle failure, necking, and homogeneous plastic flow is gradual as the temperature is increased.

Graphical abstract: Distinguishing failure modes in oligomeric polymer nanopillars

Article information

Article type
Paper
Submitted
05 Apr 2019
Accepted
29 Jul 2019
First published
29 Jul 2019

Soft Matter, 2019,15, 6589-6595

Author version available

Distinguishing failure modes in oligomeric polymer nanopillars

E. Y. Lin and R. A. Riggleman, Soft Matter, 2019, 15, 6589 DOI: 10.1039/C9SM00699K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements