Issue 30, 2019

Splitting droplets through coalescence of two different three-phase contact lines

Abstract

Moving contact lines of more than two phases dictate a large number of interfacial phenomena. Despite their significance in fundamental and applied processes, the contact lines at a junction of four-phases (two immiscible liquids, a solid and gas) have been addressed only in a few investigations. Here, we report an intriguing phenomenon that follows after the four phases oil, water, solid and gas make contact through the coalescence of two different three-phase contact lines. We combine experimental studies and theoretical analyses to reveal and rationalize the dynamics exhibited upon the coalescence between the contact line of a micron-sized oil droplet and the receding contact line of a millimeter-sized water drop that covers the oil droplet on the substrate. We find that after the coalescence a four-phase contact line is formed for a brief period. However this quadruple contact line is not stable, leading to a ‘droplet splitting’ effect and eventually expulsion of the oil droplet from the water drop. We then show that the interfacial tension between the different phases and the viscosity of the oil droplet dictate the splitting dynamics. More viscous oils display higher resistance to the extreme deformations of the droplet induced by the instability of the quadruple contact line and no droplet expulsion is observed in such cases.

Graphical abstract: Splitting droplets through coalescence of two different three-phase contact lines

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2019
Accepted
04 Jun 2019
First published
10 Jun 2019

Soft Matter, 2019,15, 6055-6061

Splitting droplets through coalescence of two different three-phase contact lines

H. Yu, P. Kant, B. Dyett, D. Lohse and X. Zhang, Soft Matter, 2019, 15, 6055 DOI: 10.1039/C9SM00638A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements