Issue 30, 2019

The solute mechanical properties impact on the drying of dairy and model colloidal systems

Abstract

The evaporation of colloidal solutions is frequently observed in nature and in everyday life. The investigation of the mechanisms taking place during the desiccation of biological fluids is currently a scientific challenge with potential biomedical and industrial applications. In the last few decades, seminal works have been performed mostly on dried droplets of saliva, urine and plasma. However, the full understanding of the drying process in biocolloids is far from being achieved and, notably, the impact of solute properties on the morphological characteristics of the evaporating droplets, such as colloid segregation, skin formation and crack pattern development, is still to be elucidated. For this purpose, the use of model colloidal solutions, whose rheological behavior is more easily deducible, could represent a significant boost. In this work, we compare the drying of droplets of whey proteins and casein micelles, the two main milk protein classes, to that of dispersions of silica particles and polymer-coated silica particles, respectively. The mechanical behavior of such biological colloids and model silica dispersions was investigated through the analysis of crack formation, and the measurements of their mechanical properties using indentation testing. The study reveals numerous analogies between dairy and the corresponding model systems, thus confirming the latter as a plausible powerful tool to highlight the signature of the matter at the molecular scale during the drying process.

Graphical abstract: The solute mechanical properties impact on the drying of dairy and model colloidal systems

Article information

Article type
Paper
Submitted
20 Feb 2019
Accepted
04 Jul 2019
First published
05 Jul 2019

Soft Matter, 2019,15, 6190-6199

The solute mechanical properties impact on the drying of dairy and model colloidal systems

C. Le Floch-Fouéré, L. Lanotte, R. Jeantet and L. Pauchard, Soft Matter, 2019, 15, 6190 DOI: 10.1039/C9SM00373H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements