Skip to main content
Log in

Synthesis and photophysical properties of pyridyl conjugated triazole appended naphthalenediimide derivatives

  • PAPER
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of three substituted triazole appended NDI-derivatives, 2,7-bis(3,5-di(pyridin-X-yl)-4H-1,2,4-triazol-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (where X = 2, NDI-PyTz-1; 3, NDI-PyTz-2; and 4, NDI-PyTz-3), were designed, synthesized and well characterized using various analytical and spectroscopic techniques. All the three NDI-PyTz derivatives exhibit decent electronic properties as suggested by DFT, cyclic voltammetry and fluorescence studies. In particular, NDI-PyTz-1 demonstrated the generation of a stable anion radical [NDI-PyTz-1]•−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tamai and H. Miyasaka, Ultrafast Dynamics of Photochromic Systems, Chem. Rev., 2000, 100,1875–1890.

    Article  CAS  PubMed  Google Scholar 

  2. R. Pardo, M. Zayat and D. Levy, Photochromic organic-inorganic hybrid materials, Chem. Soc. Rev., 2011, 40, 672–687.

    Article  CAS  PubMed  Google Scholar 

  3. H. Dong, H. Zhu, Q. Meng, X. Gong and W. Hu, Organic photoresponse materials and devices, Chem. Soc. Rev., 2012, 41, 1754–1808.

    Article  CAS  PubMed  Google Scholar 

  4. A. Fihey, A. Perrier, W. R. Browne and D. Jacquemin, Multiphotochromic molecular systems, Chem. Soc. Rev., 2015, 44, 3719–3759.

    Article  CAS  PubMed  Google Scholar 

  5. G. Kumar and R. Gupta, Molecularly designed architectures -the metalloligand way, Chem. Soc. Rev., 2013, 42, 9403–9453.

    Article  CAS  PubMed  Google Scholar 

  6. S. Kawata and Y. Kawata, Three-Dimensional Optical Data Storage Using Photochromic Materials, Chem. Rev., 2000, 100, 1777–1788.

    Article  CAS  PubMed  Google Scholar 

  7. H. Tian and S. Yang, Recent progresses on diarylethene based photochromic switches, Chem. Soc. Rev., 2004, 33, 85–97.

    Article  CAS  PubMed  Google Scholar 

  8. S. Qu and H. Tian, Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics, Chem. Commun., 2012, 48, 3039–3051.

    Article  CAS  Google Scholar 

  9. E. Jacques, M. Romain, A. Yassin, S. Bebiche, M. Harnois, T. Mohammed-Brahim, J. Rault-Berthelot, C. Poriel, J.-W. Park, N. Audebrand, L. Vignau, N. Huby, G. Wantz and L. Hirsch, An electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type organic field effect transistors, J. Mater. Chem. C, 2014, 2, 3292–3302.

    Article  CAS  Google Scholar 

  10. Y. Wang and T. Michinobu, Benzothiadiazole and its n-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor-acceptor polymers in organic electronics, J. Mater. Chem. C, 2016, 4, 6200–6214.

    Article  CAS  Google Scholar 

  11. H. Li, T. L. Tam, Y. M. Lam, S. G. Mhaisalkar and A. C. Grimsdale, Synthesis of Low Band Gap [1,2,5]-Thiadiazolo[3,4 g]quinoxaline and Pyrazino[2,3 g]quinoxa-line Derivatives by Selective Reduction of Benzo[1,2-c;4,5-c'] bis[1,2,5]thiadiazole, Org. Lett., 2011, 13, 46–49.

    Article  PubMed  CAS  Google Scholar 

  12. E. Kozma and M. Catellani, Perylene diimides based materials for organic solar cells, Dyes Pigm., 2013, 98, 160–179.

    Article  CAS  Google Scholar 

  13. D. Zhao, Q. Wu, Z. Cai, T. Zheng, W. Chen, J. Lu and L. Yu, Electron Acceptors Based on a-Substituted Perylene Diimide (PDI) for Organic Solar Cells, Chem. Mater., 2016, 28, 1139–1146.

    Article  CAS  Google Scholar 

  14. W. Chen, X. Yang, G. Long, X. Wan, Y. Chen and Q. Zhang, A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells, J. Mater. Chem. C, 2015, 3, 4698–4705.

    Article  CAS  Google Scholar 

  15. R. Stalder, J. Mei, K. R. Graham, L. A. Estrada and J. R. Reynolds, Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics, Chem. Mater., 2014, 26, 664–678.

    Article  CAS  Google Scholar 

  16. S. V. Bhosale, C. H. Jani and S. J. Langford, Chemistry of naphthalene diimides, Chem. Soc. Rev., 2008, 37, 331–342.

    Article  CAS  PubMed  Google Scholar 

  17. T. Šolomek, N. E. Powers-Riggs, Y.-L. Wu, R. M. Young, M. D. Krzyaniak, N. E. Horwitz and M. R. Wasielewski, Electron Hopping and Charge Separation within a Naphthalene-1,4:5,8-bis(dicarboximide) Chiral Covalent Organic Cage, J. Am. Chem. Soc., 2017, 139, 3348–3351.

    Article  PubMed  CAS  Google Scholar 

  18. E. Ahmed, G. Ren, F. S. Kim, E. C. Hollenbeck and S. A. Jenekhe, Design of New Electron Acceptor Materials for Organic Photovoltaics: Synthesis, Electron Transport, Photophysics, and Photovoltaic Properties of Oligothiophene-Functionalized Naphthalene Diimides, Chem. Mater., 2011, 23, 4563–4577.

    Article  CAS  Google Scholar 

  19. J. Choi, K.-H. Kim, H. Yu, C. Lee, H. Kang, I. Song, Y. Kim, J. H. Oh and B. J. Kim, Importance of Electron Transport Ability in Naphthalene Diimide-Based Polymer Acceptors for High-Performance, Additive-Free, All-Polymer Solar Cells, Chem. Mater., 2015, 27, 5230–5237.

    Article  CAS  Google Scholar 

  20. M. Poddar, V. Sharma, S. M. Mobin and R. Misra, 1,8-Naphthalimide-Substituted BODIPY Dyads: Synthesis, Structure, Properties, and Live-Cell Imaging, Chem. - Asian J., 2018, 13, 2881–2890.

    Article  CAS  PubMed  Google Scholar 

  21. T. S. Reddy, R. Maragani, B. Dhokale, S. M. Mobin and R. Misra, Heteroatom-connected ferrocenyl substituted naphthalimides, RSC Adv., 2016, 6, 7746–7754.

    Article  CAS  Google Scholar 

  22. B. Dhokale, T. Jadhav, Y. Patil and R. Misra, Symmetrical and unsymmetrical ferrocenyl perylenediimides: Design, synthesis and properties, Dyes Pigm., 2016, 134, 164–170.

    Article  CAS  Google Scholar 

  23. M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor and S. V. Bhosale, Functional Naphthalene Diimides: Synthesis, Properties, and Applications, Chem. Rev., 2016, 116, 11685–11796.

    Article  CAS  PubMed  Google Scholar 

  24. A. Baron, C. Herrero, A. Quaranta, M.-F. Charlot, W. Leibl, B. Vauzeilles and A. Aukauloo, Efficient electron transfer through a triazole link in ruthenium(II) polypyridine type complexes, Chem. Commun., 2011, 47, 11011–11013.

    Article  CAS  Google Scholar 

  25. E.-C. Yang, Z.-Y. Liu, C.-H. Zhang, Y.-L. Yang and X.-J. Zhao, Structural diversity directed by switchable coordination of substitute groups in a ternary Cu(n)-triazole-sulfoisophthalate self-assembly system: synthesis, crystal structures and magnetic behavior, Dalton Trans., 2013, 42, 1581–1590.

    Article  CAS  PubMed  Google Scholar 

  26. J. M. Rawson, L. Donato and E. Zysman-Colman, Triazole-directed hydrogen-bonded structures of cationic iridium(III) complexes, CrystEngComm, 2014, 16, 8531–8536.

    Article  CAS  Google Scholar 

  27. B. Schulze and U. S. Schubert, Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles, Chem. Soc. Rev., 2014, 43, 2522–2571.

    Article  CAS  PubMed  Google Scholar 

  28. M. Pan, X.-M. Lin, G.-B. Li and C.-Y. Su, Progress in the study of metal-organic materials applying naphthalene diimide (NDI) ligands, Coord. Chem. Rev., 2011, 255, 1921–1936.

    Article  CAS  Google Scholar 

  29. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1980.

    Google Scholar 

  30. SAINT ver. 8.34A, Bruker AXS Inc., Madison, WI, 2014.

  31. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.

    Article  CAS  Google Scholar 

  32. A. L. Spek, Structure validation in chemical crystallography, Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65, 148–155.

    Article  CAS  Google Scholar 

  33. C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  34. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, GAUSSIAN 09, Gaussian, Inc., Wallingford, CT, 2009.

    Google Scholar 

  36. V. Barone and M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. A, 1998, 102, 1995–2001.

    Article  CAS  Google Scholar 

  37. M. Cossi, N. Rega, G. Scalmani and V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 2003, 24, 669–681.

    CAS  PubMed  Google Scholar 

  38. A. Klamt and G. Schuurmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, Perkin Trans. 2, 1993, 799–805.

    Article  Google Scholar 

  39. A. Schafer, A. Klamt, D. Sattel, J. C. W. Lohrenz and F. Eckert, COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems, Phys. Chem. Chem. Phys., 2000, 2, 2187–2193.

    Article  CAS  Google Scholar 

  40. P. H. Dinolfo, M. E. Williams, C. L. Stern and J. T. Hupp, Rhenium-Based Molecular Rectangles as Frameworks for Ligand-Centered Mixed Valency and Optical Electron Transfer, J. Am. Chem. Soc., 2004, 126, 12989–13001.

    Article  CAS  PubMed  Google Scholar 

  41. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka and M. A. Spackman, CrystalExplorer17, University of Western Australia, 2017.

    Google Scholar 

  42. R. Rybakiewicz, E. D. Glowacki, L. Skorka, S. Pluczyk, P. Zassowski, D. H. Apaydin, M. Lapkowski, M. Zagorska and A. Pron, Low and High Molecular Mass Dithienopyrrole-Naphthalene Bisimide Donor-Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour, Chem. - Eur.J., 2017, 23, 2839–2851.

    Article  CAS  PubMed  Google Scholar 

  43. S. Guha and S. Saha, Fluoride Ion Sensing by an Anion-n Interaction, J. Am. Chem. Soc., 2010, 132, 17674–17677.

    Article  CAS  PubMed  Google Scholar 

  44. A. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer, Analyst, 1983, 108, 1067–1071.

    Article  CAS  Google Scholar 

  45. E. M. Kosower, H. Dodiuk, K. Tanizawa, M. Ottolenghi and N. Orbach, Intramolecular donor-acceptor systems. Radiative and nonradiative processes for the excited states of 2-N-arylamino-6-naphthalenesulfonates, J. Am. Chem. Soc., 1975, 97, 2167–2178.

    Article  CAS  Google Scholar 

  46. M. F. Broglia, M. L. Gómez, S. G. Bertolotti, H. A. Montejano and C. M. Previtali, Photophysical properties of safranine and phenosafranine: A comparative study by laser flash photolysis and laser induced optoacoustic spectroscopy, J. Photochem. Photobiol., A, 2005, 173, 115–120.

    Article  CAS  Google Scholar 

  47. S. Jockusch, H.-J. Timpe, W. Schnabel and N. J. Turro, Photoinduced Energy and Electron Transfer between Ketone Triplets and Organic Dyes, J. Phys. Chem. A, 1997, 101, 440–445.

    Article  CAS  Google Scholar 

  48. M. Y. Berezin and S. Achilefu, Fluorescence Lifetime Measurements and Biological Imaging, Chem. Rev., 2010, 110, 2641–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. René Albani, Fluorescence lifetimes of tryptophan: Structural origin and relation with So 1Lb and So 1La transitions, J. Fluoresc., 2009, 19, 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  50. H. Lee, M. Y. Berezin, M. Henary, L. Strekowski and S. Achilefu, Fluorescence lifetime properties of near-infrared cyanine dyes in relation to their structures, J. Photochem. Photobiol., A, 2008, 200, 438–444.

    Article  CAS  Google Scholar 

  51. C. M. Cardona, L. Wei, A. E. Kaifer, D. Stockdale and G. C. Bazan, Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications, Adv. Mater., 2011, 23, 2367–2371.

    Article  CAS  PubMed  Google Scholar 

  52. B. W. D'Andrade, S. Datta, S. R. Forrest, P. Djurovich, E. Polikarpov and M. E. Thompson, Relationship between the ionization and oxidation potentials of molecular organic semiconductors, Org. Electron., 2005, 6, 11–20.

    Article  CAS  Google Scholar 

  53. A. Mallick, B. Haldar, S. Maiti, S. C. Bera and N. Chattopadhyay, Photophysical Study of 3-Acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine in Biomimetic Reverse Micellar Nanocavities: A Spectroscopic Approach, J. Phys. Chem. B, 2005, 109, 14675–14682.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G. Kumar thanks the Department of Science and Technology (DST), Government of India for the financial assistance in the form of the INSPIRE Faculty Award with Ref. No. [DST/ INSPIRE/04/2015/001300]. The authors are grateful to the UGC networking resource centre, School of Chemistry, University of Hyderabad, Hyderabad for providing the NMR, CHN, single crystal X-ray diffraction and XRD powder facilities. Dr Praveen Kumar, Department of Physics, DAV University, Jalandhar is gratefully acknowledged for providing the support for fluorescence studies. We thank Dr Mohd Afzal, Department of Chemistry, Jadavpur University, Kolkata for valuable discussions and help with the fluorescence data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girijesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Guda, R., Husain, A. et al. Synthesis and photophysical properties of pyridyl conjugated triazole appended naphthalenediimide derivatives. Photochem Photobiol Sci 18, 1333–1341 (2019). https://doi.org/10.1039/c9pp00003h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00003h

Navigation