Skip to main content

Advertisement

Log in

Solar UV radiation in a changing world: roles of cryosphere—land—water—atmosphere interfaces in global biogeochemical cycles

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO2) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO2, including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Bais, G. Bernhard, R. L. McKenzie, P. J. Aucamp, P. J. Young, M. Ilyas, P. Jöckel and M. Deushi, Ozoneclimate interactions and effects on solar ultraviolet radiation, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90059K.

  2. J. F. Bornman, P. W. Barnes, T. M. Robson, S. A. Robinson, M. A. K. Jansen, C. L. Ballaré and S. D. Flint, Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90061B.

  3. J. F. Bornman, P. W. Barnes, S. A. Robinson, C. L. Ballaré, S. D. Flint and M. M. Caldwell, Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems, Photochem. Photobiol. Sci., 2015, 14, 88–107.

    Article  CAS  PubMed  Google Scholar 

  4. S. A. Robinson and D. J. Erickson, Not just about sunburn - the ozone hole’s profound effect on climate has significant implications for Southern Hemisphere ecosystems, Glob. Change Biol., 2015, 21, 515–527.

    Article  Google Scholar 

  5. C. E. Williamson, P. J. Neale, S. Hylander, K. C. Rose, F. L. Figueroa, S. Robinson, D.-P. Häder, S.-Å. Wängberg and R. C. Worrest, The interactive effects of stratospheric ozone depletion, UV radiation, and climate change on aquatic ecosystems, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90062K.

  6. D. J. Erickson, B. Sulzberger, R. G. Zepp and A. T. Austin, Effects of stratospheric ozone depletion, solar UV radiation, and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 2015, 14, 127–148.

    Article  CAS  PubMed  Google Scholar 

  7. D. J. Ivy, S. Solomon, N. Calvo and D. W. J. Thompson, Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate, Environ. Res. Lett., 2017, 12, 024004.

    Article  CAS  Google Scholar 

  8. J. A. Francis and S. J. Vavrus, Evidence for a wavier jet stream in response to rapid Arctic warming, Environ. Res. Lett., 2015, 10, 014005.

    Article  Google Scholar 

  9. J. E. Overland, K. Dethloff, J. A. Francis, R. J. Hall, E. Hanna, S. J. Kim, J. A. Screen, T. G. Shepherd and T. Vihma, Nonlinear response of mid-latitude weather to the changing Arctic, Nat. Clim. Change, 2016, 6, 992–999.

    Article  Google Scholar 

  10. J. A. Francis and S. J. Vavrus, Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 2012, 39, 051000.

    Article  Google Scholar 

  11. M. Kretschmer, D. Coumou, J. F. Donges and J. Runge, Using causal effect networks to analyze different Arctic drivers of midlatitude winter circulation, J. Clim., 2016, 29, 4069–4081.

    Article  Google Scholar 

  12. B. Sulzberger and J. S. Arey, Impacts of polar changes on the UV-induced mineralization of terrigenous dissolved organic matter, Environ. Sci. Technol., 2016, 50, 6621–6631.

  13. B. Ronalds, E. Barnes and P. Hassanzadeh, A barotropic mechanism for the response of jet stream variability to Arctic amplification and sea ice loss, J. Clim., 2018, 31, 7069–7085.

    Article  Google Scholar 

  14. U. von Gunten, Oxidation processes in water treatment: Are we on track?, Environ. Sci. Technol., 2018, 52, 5062–5075.

  15. T. Topaz, R. Egozi, G. Eshel and B. Chefetz, Pesticide load dynamics during stormwater flow events in Mediterranean coastal streams: Alexander stream case study, Sci. Total Environ., 2018, 625, 168–177.

    Article  CAS  PubMed  Google Scholar 

  16. D. S. Ellis, C. V. Z. Cipro, C. A. Ogletree, K. E. Smith and R. B. Aronson, A 50-year retrospective of persistent organic pollutants in the fat and eggs of penguins of the Southern Ocean, Environ. Pollut., 2018, 241, 155–163.

    Article  CAS  PubMed  Google Scholar 

  17. C. E. Williamson, S. Madronich, A. Lal, R. G. Zepp, R. M. Lucas, E. P. Overholt, K. C. Rose, S. G. Schladow and J. Lee-Taylor, Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters, Sci. Rep., 2017, 7, 13033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. P. M. Crill and B. F. Thornton, Whither methane in the IPCC process?, Nat. Clim. Change, 2017, 7, 678–680.

    Article  Google Scholar 

  19. M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Curry, C. Frankenberg, N. Gedney, L. Hoglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H. S. Kim, T. Kleinen, P. Krummel, J. F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, V. Naik, S. O’Doherty, F. J. W. Parmentier, P. K. Patra, C. H. Peng, S. S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, M. Santini, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Q. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. R. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Y. Xu, Y. Yoshida, B. Zhang, Z. Zhang and Q. Zhu, The global methane budget 2000–2012, Earth Syst. Sci. Data, 2016, 8, 697–751.

    Article  Google Scholar 

  20. E. L. Fleming, C. George, D. E. Heard, C. H. Jackman, M. J. Kurylo, W. Mellouki, V. L. Orkin, W. H. Swartz, T. J. Wallington, P. H. Wine and J. B. Burkholder, The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends, J. Geophys. Res.: Atmos., 2015, 120, 5267–5293.

    Article  CAS  Google Scholar 

  21. S. R. Wilson, S. Madronich, J. D. Longstreth and K. R. Solomon, Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health, Photochem. Photobiol. Sci., 2019, 18, DOI:10.1039/C8PP90064G.

  22. A. L. Andrady, P. J. Aucamp, A. Austin, A. F. Bais, C. L. Ballaré, P. W. Barnes, G. H. Bernhard, J. F. Bornman, M. M. Caldwell, F. R. De Gruijl, D. J. Erickson, S. D. Flint, K. Gao, P. Gies, D.-P. Häder, M. Ilyas, J. Longstreth, R. M. Lucas, S. Madronich, R. L. McKenzie, R. Neale, M. Norval, K. K. Pandy, N. D. Paul, M. Rautio, H. H. Redhwi, S. A. Robinson, K. Rose, M. Shao, R. P. Sinha, K. R. Solomon, B. Sulzberger, Y. Takizawa, X. Tang, A. Torikai, K. Tourpali, J. C. van der Leun, S-Å. Wängberg, C. E. Williamson, S. R. Wilson, R. C. Worrest, A. R. Young and R. G. Zepp, Environmental effects of ozone depletion and its interactions with climate change: 2014 assessment Executive summary, Photochem. Photobiol. Sci., 2015, 14, 14–18.

    Article  CAS  Google Scholar 

  23. J. T. Pinhey and R. D. G. Rigby, Photo-reduction of chloro- and bromo-aromatic compounds, Tetrahedron Lett., 1969, 1267–1270.

    Google Scholar 

  24. R. G. Zepp and D. M. Cline, Rates of direct photolysis in aquatic environment, Environ. Sci. Technol., 1977, 11, 359–366.

  25. Y. Chen, S. U. Khan and M. Schnitzer, Ultraviolet irradiation of dilute fulvic acid solutions, Soil Sci. Soc. Am. J., 1978, 42, 292–296.

    Article  CAS  Google Scholar 

  26. C. J. M. Kramer, Degradation by sunlight of dissolved fluorescing substances in the upper layers of the eastern Atlantic Ocean, Neth. J. Sea Res., 1979, 13, 325–329.

    Article  Google Scholar 

  27. O. C. Zafiriou and M. B. True, Nitrite photolysis in sea-water by sunlight, Mar. Chem., 1979, 8, 9–32.

    Article  CAS  Google Scholar 

  28. R. G. Zepp, P. F. Schlotzhauer and R. M. Sink, Photosensitized transformations involving electronicenergy transfer in natural-waters - role of humic substances, Environ. Sci. Technol., 1985, 19, 74–81.

  29. D. L. Moorhead and T. Callaghan, Effects of increasing ultraviolet-B radiation on decomposition and soil organic-matter dynamics - A synthesis and modeling study, Biol. Fertil. Soils, 1994, 18, 19–26.

    Article  CAS  Google Scholar 

  30. C. Gehrke, U. Johanson, T. V. Callaghan, D. Chadwick and C. H. Robinson, The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the sub-Arctic, Oikos, 1995, 72, 213–222.

    Google Scholar 

  31. M. A. Tarr, W. L. Miller and R. G. Zepp, Direct carbonmonoxide photoproduction from plant matter, J. Geophys. Res.: Atmos., 1995, 100, 11403–11413.

    Article  CAS  Google Scholar 

  32. R. G. Zepp, D. J. Erickson, N. D. Paul and B. Sulzberger, Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 2011, 10, 261–279.

    Article  CAS  PubMed  Google Scholar 

  33. WMO, Executive Summary: Scientific Assessment of Ozone Depletion: World Meteorological Organization, Global Ozone Research and Monitoring Project, World Meteorological Organization Report No. 58, Geneva Switzerland, 2018, p. 67.

  34. A. T. Austin and L. Vivanco, Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation, Nature, 2006, 442, 555–558.

    Article  CAS  PubMed  Google Scholar 

  35. R. M. Cory, C. P. Ward, B. C. Crump and G. W. Kling, Sunlight controls water column processing of carbon in arctic fresh waters, Science, 2014, 345, 925–928.

    Article  CAS  PubMed  Google Scholar 

  36. A. L. Andrady, K. K. Pandey and A. M. Heikkilä, Interactive effects of solar UV radiation and climate change on material damage, Photochem. Photobiol. Sci., 2019, 18, DOI: 10.1039/C8PP90065E.

  37. L. A. Brandt, C. Bohnet and J. Y. King, Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems, J. Geophys. Res.: Biogeosci., 2009, 114, G02004.

  38. J. K. Weng and C. Chapple, The origin and evolution of lignin biosynthesis, New Phytol., 2010, 187, 273–285.

  39. A. T. Austin and C. L. Ballaré, Dual role of lignin in plant litter decomposition in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4618–4622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. A. T. Austin, M. S. Mendez and C. L. Ballaré, Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 4392–4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Y. Lin, R. D. Scarlett and J. Y. King, Effects of UV photodegradation on subsequent microbial decomposition of Bromus diandrus litter, Plant Soil, 2015, 395, 263–271.

    Article  CAS  Google Scholar 

  42. K. Mopper, D. J. Kieber, A. Stubbins, D. Hansell and C. Carlson, Marine Photochemistry of Organic Matter: Processes and Impacts, in Biogeochemistry of Marine Dissolved Organic Matter, Academic Press, 2nd edn, 2015, pp. 389–450.

    Book  Google Scholar 

  43. P. I. Araujo and A. T. Austin, A shady business: pine afforestation alters the primary controls on litter decomposition along a precipitation gradient in Patagonia, Argentina, J. Ecol., 2015, 103, 1408–1420.

    Article  CAS  Google Scholar 

  44. C. L. Ballaré and R. Pierik, The shade-avoidance syndrome: multiple signals and ecological consequences, Plant., Cell Environ., 2017, 40, 2530–2543.

    Article  CAS  Google Scholar 

  45. R. M. Cory, J. B. Cotner and K. McNeill, Quantifying interactions between singlet oxygen and aquatic fulvic acids, Environ. Sci. Technol., 2009, 43, 718–723.

    Article  CAS  PubMed  Google Scholar 

  46. R. Wolf, J.-E. Thrane, D. O. Hessen and T. Andersen, Modelling ROS formation in boreal lakes from interactions between dissolved organic matter and absorbed solar photon flux, Water Res., 2018, 132, 331–339.

    Article  CAS  PubMed  Google Scholar 

  47. S. E. Page, J. R. Logan, R. M. Cory and K. McNeill, Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in Arctic surface waters, Environ. Sci.: Processes Impacts, 2014, 16, 807–822.

    CAS  Google Scholar 

  48. A. Trusiak, L. A. Treibergs, G. W. Kling and R. M. Cory, The role of iron and reactive oxygen species in the production of CO2 in Arctic soil waters, Geochim. Cosmochim. Acta, 2018, 224, 80–95.

    Article  CAS  Google Scholar 

  49. D. C. Waggoner, A. S. Wozniak, R. M. Cory and P. G. Hatcher, The role of reactive oxygen species in the degradation of lignin derived dissolved organic matter, Geochim. Cosmochim. Acta, 2017, 208, 171–184.

    Article  CAS  Google Scholar 

  50. R. M. Cory, K. McNeill, J. P. Cotner, A. Amado, J. M. Purcell and A. G. Marshall, Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter, Environ. Sci. Technol., 2010, 44, 3683–3689.

    Article  CAS  PubMed  Google Scholar 

  51. C. P. Ward, S. G. Nalven, B. C. Crump, G. W. Kling and R. M. Cory, Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration, Nat. Commun., 2017, 8, 772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. A. M. Anesio, W. Graneli, G. R. Aiken, D. J. Kieber and K. Mopper, Effect of humic substance photodegradation on bacterial growth and respiration in lake water, Appl. Environ. Microbiol., 2005, 71, 6267–6275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. K. E. Judd, B. C. Crump and G. W. Kling, Bacterial responses in activity and community composition to photo-oxidation of dissolved organic matter from soil and surface waters, Aquat. Sci., 2007, 69, 96–107.

    Article  CAS  Google Scholar 

  54. E. C. Adair, W. J. Parton, J. Y. King, L. A. Brandt and Y. Lin, Accounting for photodegradation dramatically improves prediction of carbon losses in dryland systems, Ecosphere, 2017, 8, 1–16.

    Article  Google Scholar 

  55. B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida and L. J. Tranvik, Sunlight-induced carbon dioxide emissions from inland waters, Global Biogeochem. Cycles, 2014, 28, 696–711.

    Article  CAS  Google Scholar 

  56. L. C. Powers and W. L. Miller, Photochemical production of CO and CO2 in the Northern Gulf of Mexico: Estimates and challenges for quantifying the impact of photochemistry on carbon cycles, Mar. Chem., 2015, 171, 21–35.

    Article  CAS  Google Scholar 

  57. D. Vachon, J. F. Lapierre and P. A. del Giorgio, Seasonality of photochemical dissolved organic carbon mineralization and its relative contribution to pelagic CO2 production in northern lakes, J. Geophys. Res.: Biogeosci., 2016, 121, 864–878.

    Article  CAS  Google Scholar 

  58. A. T. Austin, Has water limited our imagination for arid-land biogeochemistry?, Trends Ecol. Evol., 2011, 26, 229–235.

    Article  PubMed  Google Scholar 

  59. D. Gliksman, A. Rey, R. Seligmann, R. Dumbur, O. Sperling, Y. Navon, S. Haenel, P. De Angelis, J. A. Arnone and J. M. Grunzweig, Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands, Glob. Change Biol., 2017, 23, 1564–1574.

    Article  Google Scholar 

  60. S. Rutledge, D. I. Campbell, D. Baldocchi and L. A. Schipper, Photodegradation leads to increased CO2 losses from terrestrial organic matter, Glob. Change Biol., 2010, 16, 3065–3074.

    Google Scholar 

  61. H. Lee, T. Rahn and H. Throop, An accounting of C-based trace gas release during abiotic plant litter degradation, Glob. Change Biol., 2012, 18, 1185–1195.

    Article  Google Scholar 

  62. C. L. Ballaré and A. T. Austin, UV radiation and terrestrial ecosystems: Emerging perspectives, Cabi Publishing-C a B Int, Wallingford, 2017.

    Google Scholar 

  63. N. R. Baker and S. D. Allison, Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate, Ecology, 2015, 96, 1994–2003.

    Article  PubMed  Google Scholar 

  64. A. Gaxiola and J. J. Armesto, Understanding litter decomposition in semiarid ecosystems: linking leaf traits, UV exposure and rainfall variability, Front. Plant Sci., 2015, 6, 140.

    Article  PubMed  PubMed Central  Google Scholar 

  65. D. Gliksman, S. Haenel and J. M. Grunzweig, Biotic and abiotic modifications of leaf litter during dry periods affect litter mass loss and nitrogen loss during wet periods, Funct. Ecol., 2018, 32, 831–839.

    Article  Google Scholar 

  66. J. Wang, L. L. Liu, X. Wang, S. Yang, B. B. Zhang, P. Li, C. L. Qiao, M. F. Deng and W. X. Liu, High night-time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape, Funct. Ecol., 2017, 31, 1659–1668.

    Article  Google Scholar 

  67. C. Schmitz, H. van Meijl, P. Kyle, G. C. Nelson, S. Fujimori, A. Gurgel, P. Havlik, E. Heyhoe, D. M. d’Croz and A. Popp, Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison, Agric. Econ., 2014, 45, 69–84.

    Article  Google Scholar 

  68. P. Smith, S. J. Davis, F. Creutzig, S. Fuss, J. Minx, B. Gabrielle, E. Kato, R. B. Jackson, A. Cowie and E. Kriegler, Biophysical and economic limits to negative CO2 emissions, Nat. Clim. Change, 2016, 6, 42–50.

    Article  CAS  Google Scholar 

  69. M. Almagro, F. T. Maestre, J. Martinez-Lopez, E. Valencia and A. Rey, Climate change may reduce litter decomposition while enhancing the contribution of photodegradation in dry perennial Mediterranean grasslands, Soil Biol. Biochem., 2015, 90, 214–223.

    Article  CAS  Google Scholar 

  70. G. Huang, H. M. Zhao and Y. Li, Litter decomposition in hyper-arid deserts: Photodegradation is still important, Sci. Total Environ., 2017, 601, 784–792.

    Article  PubMed  CAS  Google Scholar 

  71. T. A. Day, R. Guenon and C. T. Ruhland, Photodegradation of plant litter in the Sonoran Desert varies by litter type and age, Soil Biol. Biochem., 2015, 89, 109–122.

    Article  CAS  Google Scholar 

  72. M. F. Adame, S. F. Wright, A. Grinham, K. Lobb, C. E. Reymond and C. E. Lovelock, Terrestrial-marine connectivity: Patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein, Limnol. Oceanogr., 2012, 57, 1492–1502.

    Article  CAS  Google Scholar 

  73. B. Biddanda, Global significance of the changing freshwater carbon cycle, EOS, 2017, 15–17.

    Google Scholar 

  74. J. J. Cole, Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg and J. Melack, Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 2007, 10, 171–184.

    Article  CAS  Google Scholar 

  75. P. A. Raymond, J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Durr, M. Meybeck, P. Ciais and P. Guth, Global carbon dioxide emissions from inland waters, Nature, 2013, 503, 355–359.

    Article  CAS  PubMed  Google Scholar 

  76. A. D. McGuire, L. G. Anderson, T. R. Christensen, S. Dallimore, L. D. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald and N. Roulet, Sensitivity of the carbon cycle in the Arctic to climate change, Ecol. Monogr., 2009, 79, 523–555.

    Article  Google Scholar 

  77. C. E. Williamson, E. P. Overholt, J. A. Brentrup, R. M. Pilla, T. H. Leach, S. G. Schladow, J. D. Warren, S. S. Urmy, S. Sadro, S. Chandra and P. J. Neale, Sentinel responses to droughts, wildfires, and floods: effects of UV radiation on lakes and their ecosystem services, Front. Ecol. Environ., 2016, 14, 102–109.

    Article  Google Scholar 

  78. H. Majidzadeh, H. Uzun, A. Ruecker, D. Miller, J. Vernon, H. Y. Zhang, S. W. Bao, M. T. K. Tsui, T. Karanfil and A. T. Chow, Extreme flooding mobilized dissolved organic matter from coastal forested wetlands, Biogeochemistry, 2017, 136, 293–309.

    Article  CAS  Google Scholar 

  79. B. Sulzberger, Light-induced redox cycling of iron: roles for CO2 uptake and release by aquatic ecosystems, Aquat. Geochem., 2015, 21, 65–80.

    Article  CAS  Google Scholar 

  80. D. A. Hutchins and P. W. Boyd, Marine phytoplankton and the changing ocean iron cycle, Nat. Clim. Change, 2016, 6, 1072–1079.

    Article  CAS  Google Scholar 

  81. D. L. Shi, S. A. Kranz, J. M. Kim and F. M. M. Morel, Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, E3094–E3100.

  82. N. Gruber, Ocean biogeochemistry: Carbon at the coastal interface, Nature, 2015, 517, 148–149.

    Article  CAS  PubMed  Google Scholar 

  83. G. G. Laruelle, R. Lauerwald, B. Pfeil and P. Regnier, Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas, Global Biogeochem. Cycles, 2014, 28, 1199–1214.

    Article  CAS  Google Scholar 

  84. R. M. Cory, B. C. Crump, J. A. Dobkowski and G. W. Kling, Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 3429–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. R. J. Kieber, R. F. Whitehead and S. A. Skrabal, Photochemical production of dissolved organic carbon from resuspended sediments, Limnol. Oceanogr., 2006, 51, 2187–2195.

    Article  CAS  Google Scholar 

  86. Y. N. Liu, D. C. O. Thornton, T. S. Bianchi, W. A. Arnold, M. R. Shields, J. Chen and S. A. Yvon-Lewis, Dissolved organic matter composition drives the marine production of brominated very short-lived substances, Environ. Sci. Technol., 2015, 49, 3366–3374.

    Article  CAS  PubMed  Google Scholar 

  87. G. S. Song, J. D. Richardson, J. P. Werner, H. X. Xie and D. J. Kieber, Carbon monoxide photoproduction from particles and solutes in the Delaware estuary under contrasting hydrological conditions, Environ. Sci. Technol., 2015, 49, 14048–14056.

    Article  CAS  PubMed  Google Scholar 

  88. E. Appiani and K. McNeill, Photochemical production of singlet oxygen from particulate organic matter, Environ. Sci. Technol., 2015, 49, 3514–3522.

    Article  CAS  PubMed  Google Scholar 

  89. M. L. Estapa, L. M. Mayer and E. Boss, Rate and apparent quantum yield of photodissolution of sedimentary organic matter, Limnol. Oceanogr., 2012, 57, 1743–1756.

    Article  CAS  Google Scholar 

  90. J. R. Helms, D. A. Glinski, R. N. Mead, M. W. Southwell, G. B. Avery, R. J. Kieber and S. A. Skrabal, Photochemical dissolution of organic matter from resuspended sediments: Impact of source and diagenetic state on photo-release, Org. Geochem., 2014, 73, 83–89.

    Article  CAS  Google Scholar 

  91. L. M. Mayer, K. H. Thornton and L. L. Schick, Bioavailability of organic matter photodissolved from coastal sediments, Aquat. Microb. Ecol., 2011, 64, 275–284.

    Article  Google Scholar 

  92. M. L. Estapa and L. M. Mayer, Photooxidation of particulate organic matter, carbon/oxygen stoichiometry, and related photoreactions, Mar. Chem., 2010, 122, 138–147.

    Article  CAS  Google Scholar 

  93. L. M. Mayer, L. L. Schick, K. R. Hardy and M. L. Estapa, Photodissolution and other photochemical changes upon irradiation of algal detritus, Limnol. Oceanogr., 2009, 54, 1688–1698.

    Article  CAS  Google Scholar 

  94. O. Pisani, Y. Yamashita and R. Jaffe, Photo-dissolution of flocculent, detrital material in aquatic environments: Contributions to the dissolved organic matter pool., Water Res., 2011, 45, 3836–3844.

    Article  CAS  PubMed  Google Scholar 

  95. L. M. Mayer, L. L. Schick, T. S. Bianchi and L. A. Wysocki, Photochemical changes in chemical markers of sedimentary organic matter source and age, Mar. Chem., 2009, 113, 123–128.

    Article  CAS  Google Scholar 

  96. J. F. Dean, Y. van der Velde, M. H. Garnett, K. J. Dinsmore, R. Baxter, J. S. Lessels, P. Smith, L. E. Street, J. A. Subke, D. Tetzlaff, I. Washbourne, P. A. Wookey and M. F. Billett, Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback, Environ. Res. Lett., 2018, 13, 034024.

    Article  CAS  Google Scholar 

  97. R. C. Toohey, N. M. Herman-Mercer, P. F. Schuster, E. A. Mutter and J. C. Koch, Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost, Geophys. Res. Lett., 2016, 43, 12120–12130.

    Article  CAS  Google Scholar 

  98. A. Stubbins, P. J. Mann, L. Powers, T. B. Bittar, T. Dittmar, C. P. McIntyre, T. I. Eglinton, N. Zimov and R. G. M. Spencer, Low photolability of yedoma permafrost dissolved organic carbon, J. Geophys. Res.: Biogeosci., 2017, 122, 200–211.

    Article  CAS  Google Scholar 

  99. J. J. Wang, M. J. Lafrenière, S. F. Lamoureux, A. J. Simpson, Y. Gélinas and M. J. Simpson, Differences in riverine and pond water dissolved organic matter composition and sources in Canadian high Arctic watersheds affected by active layer detachments, Environ. Sci. Technol., 2018, 52, 1062–1071.

  100. R. M. Cory, K. H. Harrold, B. T. Neilson and G. W. Kling, Controls of dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation, Biogeosci. Discuss., 2015, 12, 9793–9838.

    Google Scholar 

  101. R. M. Cory and G. W. Kling, Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum, Limnol. Oceanogr. Lett., 2018, 3, 102–116.

    Article  CAS  Google Scholar 

  102. J. Hong, H. X. Xie, L. D. Guo and G. S. Song, Carbon monoxide photoproduction: Implications for photoreactivity of Arctic permafrost-derived soil dissolved organic matter, Environ. Sci. Technol., 2014, 48, 9113–9121.

    Article  CAS  PubMed  Google Scholar 

  103. C. P. Ward and R. M. Cory, Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils, Environ. Sci. Technol., 2016, 50, 3545–3553.

    Article  CAS  PubMed  Google Scholar 

  104. J. Fouché, M. J. Lafreniere, K. Rutherford and S. Lamoureux, Seasonal hydrology and permafrost disturbance impacts on dissolved organic matter composition in High Arctic headwater catchments, Arctic. Sci., 2017, 3, 378–405.

    Article  Google Scholar 

  105. J. A. L. Gareis and L. F. W. Lesack, Fluxes of particulates and nutrients during hydrologically defined seasonal periods in an ice-affected great Arctic river, the Mackenzie, WaterResour. Res., 2017, 53, 6109–6132.

    Article  CAS  Google Scholar 

  106. P. J. Mann, R. G. M. Spencer, P. J. Hernes, J. Six, G. R. Aiken, S. E. Tank, J. W. McClelland, K. D. Butler, R. Y. Dyda and R. M. Holmes, Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements, Front. Earth Sci., 2016, 4, 1–18.

    Article  Google Scholar 

  107. J. A. L. Gareis and L. F. W. Lesack, Photodegraded dissolved organic matter from peak freshet river discharge as a substrate for bacterial production in a lake-rich great Arctic delta, Arctic. Sci., 2018, 4, 557–583.

    Article  Google Scholar 

  108. C. J. Cox, R. S. Stone, D. C. Douglas, D. M. Stanitski, G. J. Divoky, G. S. Dutton, C. Sweeney, J. C. George and D. U. Longenecker, Drivers and environmental responses to the changing annual snow cycle of Northern Alaska, Bull. Am. Meteorol. Soc., 2017, 98, 2559–2577.

    Article  Google Scholar 

  109. T. Smejkalova, M. E. Edwards and J. Dash, Arctic lakes show strong decadal trend in earlier spring ice-out, Sci. Rep., 2016, 6, 38449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. A. Bring, I. Fedorova, Y. Dibike, L. Hinzman, J. Mard, S. H. Mernild, T Prowse, O. Semenova, S. L. Stuefer and M. K. Woo, Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges, J. Geophys. Res.: Biogeosci., 2016, 121, 621–649.

    Article  Google Scholar 

  111. C. G. Andresen and V. L. Lougheed, Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65year period (1948–2013), J. Geophys. Res.: Biogeosci., 2015, 120, 466–479.

    Article  Google Scholar 

  112. M. L. Carroll, J. R. G. Townshend, C. M. DiMiceli, T. Loboda and R. A. Sohlberg, Shrinking lakes of the Arctic: Spatial relationships and trajectory of change, Geophys. Res. Lett., 2011, 38, 049427.

    Article  Google Scholar 

  113. I. Nitze, G. Grosse, B. M. Jones, C. D. Arp, M. Ulrich, A. Fedorov and A. Veremeeva, Landsat-based trend analysis of lake dynamics across northern permafrost regions, Remote Sens., 2017, 9, 640.

    Article  Google Scholar 

  114. C. L. Osburn, N. J. Anderson, C. A. Stedmon, M. E. Giles, E. J. Whiteford, T. J. McGenity, A. J. Dumbrell and G. J. C. Underwood, Shifts in the source and composition of dissolved organic matter in southwest Greenland lakes along a regional hydro-climatic gradient, J. Geophys. Res.: Biogeosci., 2017, 122, 3431–3445.

    Article  CAS  Google Scholar 

  115. M. Jolivel and M. Allard, Impact of permafrost thaw on the turbidity regime of a subarctic river: the Sheldrake River, Nunavik, Quebec, Arctic. Sci., 2017, 3, 451–474.

    Article  Google Scholar 

  116. A. Berg, K. Findell, B. Lintner, A. Giannini, S. I. Seneviratne, B. van den Hurk, R. Lorenz, A. Pitman, S. Hagemann, A. Meier, F. Cheruy, A. Ducharne, S. Malyshev and P. C. D. Milly, Land-atmosphere feedbacks amplify aridity increase over land under global warming, Nat. Clim. Change, 2016, 6, 869–874.

    Article  Google Scholar 

  117. O. Heffernan, The mystery of the expanding tropics, Nature, 2016, 530, 21–23.

    Article  CAS  Google Scholar 

  118. W. M. Jolly, M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson and D. M. Bowman, Climate-induced variations in global wildfire danger from 1979 to 2013, Nat. Commun., 2015, 6, 1–11.

    Article  CAS  Google Scholar 

  119. C. Santin and S. H. Doerr, Fire effects on soils: the human dimension, Philos. Trans. R. Soc. London, Ser. B, 2016, 371, 20150171.

    Article  PubMed  PubMed Central  Google Scholar 

  120. F. S. Hu, P. E. Higuera, P. Duffy, M. L. Chipman, A. V. Rocha, A. M. Young, R. Kelly and M. C. Dietze, Arctic tundra fires: Natural variability and responses to climate change, Front. Ecol. Environ., 2015, 13, 369–377.

    Article  Google Scholar 

  121. S. Veraverbeke, B. M. Rogers, M. L. Goulden, R. R. Jandt, C. E. Miller, E. B. Wiggins and J. T. Randerson, Lightning as a major driver of recent large fire years in North American boreal forests, Nat. Clim. Change, 2017, 7, 529–534.

    Article  Google Scholar 

  122. B. Kim and S. Sarkar, Impact of wildfires on some greenhouse gases over continental USA: A study based on satellite data, Remote Sens. Environ., 2017, 188, 118–126.

    Article  Google Scholar 

  123. R. J. Parker, H. Boesch, M. J. Wooster, D. P. Moore, A. J. Webb, D. Gaveau and D. Murdiyarso, Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes, Atmos. Chem. Phys., 2016, 16, 10111–10131.

    Article  CAS  Google Scholar 

  124. C. P. Ward, R. L. Sleighter, P. G. Hatcher and R. M. Cory, Insights into the complete and partial photooxidation of black carbon in surface waters, Environ. Sci.: Processess Impacts, 2014, 16, 721–731.

    CAS  Google Scholar 

  125. C. Santin, S. H. Doerr, A. Merino, R. Bryant and N. J. Loader, Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration, Geoderma, 2016, 264, 71–80.

    Article  CAS  Google Scholar 

  126. S. Wagner and R. Jaffé, Effect of photodegradation on molecular size distribution and quality of dissolved black carbon, Org. Geochem., 2015, 86, 1–4.

    Article  CAS  Google Scholar 

  127. D. R. N. Brown, M. T. Jorgenson, T. A. Douglas, V. E. Romanovsky, K. Kielland, C. Hiemstra, E. S. Euskirchen and R. W. Ruess, Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests, J. Geophys. Res.: Biogeosci, 2015, 120, 1619–1637.

    Article  Google Scholar 

  128. N. Colombo, F. Salerno, S. Gruber, M. Freppaz, M. Williams, S. Fratianni and M. Giardino, Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water, Glob. Planet. Change, 2018, 162, 69–83.

    Article  Google Scholar 

  129. C. Bjorneras, G. A. Weyhenmeyer, C. D. Evans, M. O. Gessner, H. P. Grossart, K. Kangur, I. Kokorite, P. Kortelainen, H. Laudon, J. Lehtoranta, N. Lottig, D. T. Monteith, P. Noges, T. Noges, F. Oulehle, G. Riise, J. A. Rusak, A. Raike, J. Sire, S. Sterling and E. S. Kritzberg, Widespread increases in iron concentration in european and North American freshwaters, Global Biogeochem. Cycles, 2017, 31, 1488–1500.

    Article  CAS  Google Scholar 

  130. Y. H. Xiao, T. Sara-Aho, H. Hartikainen and A. V. Vähätalo, Contribution of ferric iron to light absorption by chromophoric dissolved organic matter, Limnol. Oceanogr., 2013, 58, 653–662.

    Article  CAS  Google Scholar 

  131. Y. F. Gu, A. Lensu, S. Peramaki, A. Ojala and A. V. Vähätalo, Iron and pH regulating the photochemical mineralization of dissolved organic carbon, ACS Omega, 2017, 2, 1905–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. S. A. Strode, B. N. Duncan, E. A. Yegorova, J. Kouatchou, J. R. Ziemke and A. R. Douglass, Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models, Atmos. Chem. Phys., 2015, 15, 11789–11805.

    Article  CAS  Google Scholar 

  133. G. Myhre, D. Shindell, F. M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J. F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, Anthropogenic and Natural Radiative Forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Cambridge Univeristy Press, Cambridge, United Kingdom and New York, USA, 2013, pp. 659–740.

    Google Scholar 

  134. Y. Yin, F. Chevallier, P. Ciais, G. Broquet, A. Fortems-Cheiney, I. Pison and M. Saunois, Decadal trends in global CO emissions as seen by MOPITT, Atmos. Chem. Phys., 2015, 15, 13433–13451.

    Article  CAS  Google Scholar 

  135. M. Pihlatie, Ü. Rannik, S. Sami Haapanala, O. Peltola, N. Shurpali, P. Martikainen, S. Lind, N. Hyvönenn, P. Virkajärvi, M. Zahniser and I. Mammarella, Seasonal and diurnal variation in CO fluxes from an agrcultural bioenergy crop, Biogeosciences, 2016, 13, 5471–5485.

    Article  CAS  Google Scholar 

  136. G. S. Song and H. X. Xie, Spectral efficiencies of carbon monoxide photoproduction from particulate and dissolved organic matter in laboratory cultures of Arctic sea ice algae, Mar. Chem., 2017, 190, 51–65.

    Article  CAS  Google Scholar 

  137. J. Carvalho Jr., S. Amaral, M. Costa, T. S. Neto, C. Veras, F. Costa, T. Van Leeuwen, G. Krieger Filho, E. Tourigny and M. Forti, CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia, Atmos. Environ., 2016, 135, 73–83.

    Article  CAS  Google Scholar 

  138. P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R. B. Myneni, S. Piao and P. Thomton, Carbon and Other Biogeochemical Cycles, in Climate Chang 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.

    Google Scholar 

  139. R. Brownlow, D. Lowry, R. E. Fisher, J. L. France, M. Lanoiselle, B. White, M. J. Wooster, T. Zhang and E. G. Nisbet, Isotopic ratios of tropical methane emissions by atmospheric measurement, Global Biogeochem. Cycles, 2017, 31, 1408–1419.

    Article  CAS  Google Scholar 

  140. M. J. Prather and C. D. Holmes, Overexplaining or under-explaining methane’s role in climate change, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 5324–5326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. T. Thonat, M. Saunois, P. Bousquet, I. Pison, Z. L. Tan, Q. L. Zhuang, P. M. Crill, B. F. Thornton, D. Bastviken, E. J. Dlugokencky, N. Zimov, T. Laurila, J. Hatakka, O. Hermansen and D. E. J. Worthy, Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements, Atmos. Chem. Phys., 2017, 17, 8371–8394.

    Article  CAS  Google Scholar 

  142. S. M. Miller, D. E. J. Worthy, A. M. Michalak, S. C. Wofsy, E. A. Kort, T. C. Havice, A. E. Andrews, E. J. Dlugokencky, J. O. Kaplan, P. J. Levi, H. Q. Tian and B. W. Zhang, Observational constraints on the distribution, seasonality, and environmental predictors of North American boreal methane emissions, Global Biogeochem. Cycles, 2014, 28, 146–160.

    Article  CAS  Google Scholar 

  143. S. Pandey, S. Houweling, M. Krol, I. Aben, G. Monteil, N. Nechita-Banda, E. J. Dlugokencky, R. Detmers, O. Hasekamp, X. Y. Xu, W. J. Riley, B. Poulter, Z. Zhang, K. C. McDonald, J. W. C. White, P. Bousquet and T. Rockmann, Enhanced methane emissions from tropical wetlands during the 2011 La Niña, Sci. Rep., 2017, 7, 45759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Z. Zhang, N. E. Zimmermann, A. Stenke, X. Li, E. L. Hodson, G. F. Zhu, C. L. Huang and B. Poulter, Emerging role of wetland methane emissions in driving 21st century climate change, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 9647–9652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Q. Zhu, C. H. Peng, P. Ciais, H. Jiang, J. X. Liu, P. Bousquet, S. Q. Li, J. Chang, X. Q. Fang, X. L. Zhou, H. Chen, S. R. Liu, G. H. Lin, P. Gong, M. Wang, H. Wang, W. H. Xiang and J. Chen, Interannual variation in methane emissions from tropical wetlands triggered by repeated El Nino Southern Oscillation, Glob. Change Biol., 2017, 23, 4706–4716.

    Article  Google Scholar 

  146. C. A. Pugh, D. E. Reed, A. R. Desai and B. N. Sulman, Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin?, Biogeochemistry, 2018, 137, 15–25.

    Article  CAS  Google Scholar 

  147. D. Sihi, P. W. Inglett, S. Gerber and K. S. Inglett, Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production, Glob. Change Biol., 2018, 24, E259–E274.

  148. K. W. Anthony, R. Daanen, P. Anthony, T. S. von Deimling, C. L. Ping, J. P. Chanton and G. Grosse, Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s, Nat. Geosci., 2016, 9, 679–682.

    Article  CAS  Google Scholar 

  149. P. M. Chronopoulou, F. Shelley, W. J. Pritchard, S. T. Maanoja and M. Trimmer, Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone, ISME J., 2017, 11, 1386–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. C. M. Singleton, C. K. McCalley, B. J. Woodcroft, J. A. Boyd, P. N. Evans, S. B. Hodgkins, J. P. Chanton, S. Frolking, P. M. Crill, S. R. Saleska, V. I. Rich and G. W. Tyson, Methanotrophy across a natural permafrost thaw environment, ISME J., 2018, 12, 2544–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. N. Shakhova, I. Semiletov, V. Sergienko, et al., The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea-ice, Philos. Trans. R. Soc., A, 2015, 373, 214051–214064.

    Google Scholar 

  152. L. E. Revell, A. Stenke, E. Rozanov, W. Ball, S. Lossow and T Peter, The role of methane in projections of 21st century stratospheric water vapour, Atmos. Chem. Phys., 2016, 16, 13067–13080.

    Article  CAS  Google Scholar 

  153. M. Chen, W. J. Parton, E. C. Adair, S. Asao, M. D. Hartman and W. Gao, Simulation of the effects of photodecay on long-term litter decay using DayCent, Ecosphere, 2016, 7, 22.

    Google Scholar 

  154. L. X. Wang, H. L. Throop and T. Gill, A novel method to continuously monitor litter moisture - A microcosm-based experiment, J. Arid Environ., 2015, 115, 10–13.

    Article  Google Scholar 

  155. K. A. Smith, T. Ball, F. Conen, K. E. Dobbie, J. Massheder and A. Rey, Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes, Eur. J. Soil Sci., 2018, 69, 10–20.

    Article  CAS  Google Scholar 

  156. C. Voigt, R. E. Lamprecht, M. E. Marushchak, S. E. Lind, A. Novakovskiy, M. Aurela, P. J. Martikainen and C. Biasi, Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide, Glob. Change Biol., 2017, 23, 3121–3138.

    Article  Google Scholar 

  157. C. Voigt, M. E. Marushchak, R. E. Lamprecht, M. Jackowicz-Korczynski, A. Lindgren, M. Mastepanov, L. Granlund, T. R. Christensen, T. Tahvanainen, P. J. Martikainen and C. Biasi, Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 6238–6243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. G. Yang, Y. Peng, M. Marushchak, Y. Chen, G. Wang, F. Li, D. Zhang, J. Wang, J. Yu, L. Liu, S. Qin, D. Kou and Y. Yang, Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw, Environ. Sci. Technol., 2018, 52, 9162–9169.

    Article  CAS  PubMed  Google Scholar 

  159. G. Battaglia and F. Joos, Marine N2O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations, Global Biogeochem. Cycles, 2018, 32, 92–121.

    Article  CAS  Google Scholar 

  160. J. Martinez-Rey, L. Bopp, M. Gehlen, A. Tagliabue and N. Gruber, Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model, Biogeosciences, 2015, 12, 4133–4148.

    Article  Google Scholar 

  161. M. Monteiro, J. Séneca, L. Torgo, D. F. R. Cleary, N. C. M. Gomes, A. E. Santoro and C. Magalhäes, Environmental controls on esturarine nitrifying communities along a salinity gradient, Aquat. Microb. Ecol., 2017, 80, 167–180.

  162. F. Paulot, D. J. Jacob, M. T. Johnson, T. G. Bell, A. R. Baker, W. C. Keene, I. D. Lima, S. C. Doney and C. A. Stock, Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations, Global Biogeochem. Cycles, 2015, 29, 1165–1178.

    Article  CAS  Google Scholar 

  163. M. Trimmer, P. M. Chronopoulou, S. T. Maanoja, R. C. Upstill-Goddard, V. Kitidis and K. J. Purdy, Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific, Nat. Commun., 2016, 7, 1–10.

    Article  CAS  Google Scholar 

  164. K. B. Benedict and C. Anastasio, Quantum yields of nitrite (NO2 ) from the potolysis of nitrate (NO3 ) in ice at 313 nm, J. Phys. Chem. A, 2017, 121, 8474–8483.

    Article  CAS  PubMed  Google Scholar 

  165. T. A. Berhanu, J. Savarino, J. Erbland, W. C. Vicars, S. Preunkert, J. F. Martins and M. S. Johnson, Isotopic effects of nitrate photochemistry in snow: a field study at Dome C, Antarctica, Atmos. Chem. Phys., 2015, 15, 11243–11256.

    Article  CAS  Google Scholar 

  166. K. J. Morenz, Q. W. Shi, J. G. Murphy and D. J. Donaldson, Nitrate photolysis in salty snow, J. Phys. Chem. A, 2016, 120, 7902–7908.

    Article  CAS  PubMed  Google Scholar 

  167. K. Pilegard, Processes regulating nitric oxide emissions from soils, Philos. Trans. R. Soc. London, Ser. B, 2014, 368, 20130126.

    Article  CAS  Google Scholar 

  168. M. J. Newland, P. Martinerie, E. Witrant, D. Helmig, D. R. Worton, C. Hogan, W. T. Sturges and C. E. Reeves, Changes to the chemical state of the Northern Hemisphere atmosphere during the second half of the twentieth century, Atmos. Chem. Phys., 2017, 17, 8269–8283.

    Article  CAS  Google Scholar 

  169. R. Hossaini, M. P. Chipperfield, S. A. Montzka, A. Rap, S. Dhomse and W. Feng, Efficiency of short-lived halogens at influencing climate through depletion of stratospheric ozone, Nat. Geosci., 2015, 8, 186–190.

    Article  CAS  Google Scholar 

  170. B. M. Sinnhuber and S. Meul, Simulating the impact of emissions of brominated very short lived substances on past stratospheric ozone trends, Geophys. Res. Lett., 2015, 42, 2449–2456.

    Article  CAS  Google Scholar 

  171. I. Stemmler, I. Hense and B. Quack, Marine sources of bromoform in the global open ocean - global patterns and emissions, Biogeosciences, 2015, 12, 1967–1981.

    Article  Google Scholar 

  172. S. Tegtmeier, F. Ziska, I. Pisso, B. Quack, G. J. M. Velders, X. Yang and K. Kruger, Oceanic bromoform emissions weighted by their ozone depletion potential, Atmos. Chem. Phys., 2015, 15, 13647–13663.

    Article  CAS  Google Scholar 

  173. L. J. Carpenter and P. D. Nightingale, Chemistry and release of gases from the surface ocean, Chem. Rev., 2015, 115, 4015–4034.

    Article  CAS  PubMed  Google Scholar 

  174. K. M. Parker and W. A. Mitch, Halogen radicals contribute to photooxidation in coastal and estuarine waters, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 5868–5873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. W. T. Ball, J. Alsing, D. J. Mortlock, J. Staehelin, J. D. Haigh, T. Peter, F. Tummon, R. Stubi, A. Stenke, J. Anderson, A. Bourassa, S. M. Davis, D. Degenstein, S. Frith, L. Froidevaux, C. Roth, V. Sofieva, R. Wang, J. Wild, P. F. Yu, J. R. Ziemke and E. V. Rozanov, Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery, Atmos. Chem. Phys., 2018, 18, 1379–1394.

    Article  CAS  Google Scholar 

  176. M. Rex, I. Wohltmann, T. Ridder, R. Lehmann, K. Rosenlof, P. Wennberg, D. Weisenstein, J. Notholt, K. Kruger, V. Mohr and S. Tegtmeier, A tropical West Pacific OH minimum and implications for stratospheric composition, Atmos. Chem. Phys., 2014, 14, 4827–4841.

    Article  CAS  Google Scholar 

  177. K. D. Custard, K. A. Pratt, S. Y. Wang and P. B. Shepson, Constraints on Arctic atmospheric chlorine production through measurements and simulations of Cl2 and ClO, Environ. Sci. Technol., 2016, 50, 12394–12400.

    Article  CAS  PubMed  Google Scholar 

  178. K. D. Custard, A. R. W. Raso, P. B. Shepson, R. M. Staebler and K. A. Pratt, Production and release of molecular bromine and chlorine from the Arctic coastal snowpack, ACS Earth Space Chem., 2017, 1, 142–151.

    Article  CAS  Google Scholar 

  179. S. Coburn, B. Dix, E. Edgerton, C. D. Holmes, D. Kinnison, Q. Liang, A. ter Schure, S. Y. Wang and R. Volkamer, Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US, Atmos. Chem. Phys., 2016, 16, 3743–3760.

    Article  CAS  Google Scholar 

  180. A. S. Kaulfus, U. Nair, C. D. Holmes and W. M. Landing, Mercury wet scavenging and deposition differences by precipitation type, Environ. Sci. Technol., 2017, 51, 2628–2634.

    Article  CAS  PubMed  Google Scholar 

  181. K. A. Pratt, K. D. Custard, P. B. Shepson, T. A. Douglas, D. Pohler, S. General, J. Zielcke, W. R. Simpson, U. Platt, D. J. Tanner, L. G. Huey, M. Carlsen and B. H. Stirm, Photochemical production of molecular bromine in Arctic surface snowpacks, Nat. Geosci., 2013, 6, 351–356.

    Article  CAS  Google Scholar 

  182. J. C. Wang, Z. Q. Xie, F. Y. Wang and H. Kang, Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer, Sci. Total Environ., 2017, 603, 510–518.

    PubMed  Google Scholar 

  183. K. L. Nelson, A. B. Boehm, R. J. Davies-Colley, M. C. Dodd, T. Kohn, K. G. Linden, Y. Liu, P. A. Maraccini, K. McNeill, W. A. Mitch, T. H. Nguyen, K. M. Parker, R. A. Rodriguez, L. M. Sassoubre, A. I. Silverman, K. R. Wigginton and R. G. Zepp, Sunlight-mediated inactivation of microorganisms in water: A review of mechanisms and modeling approaches, Environ. Sci. Processes Impacts, 2018, 20, 1089–1122.

    Article  CAS  Google Scholar 

  184. B. Eyheraguibel, A. ter Halle and C. Richard, Photodegradation of bentazon, clopyralid, and triclopyr on model leaves: importance of a systematic evaluation of pesticide photostability on crops, J. Agric. Food Chem., 2009, 57, 1960–1966.

    Article  CAS  Google Scholar 

  185. M. Marques, M. Mari, C. Audi-Miro, J. Sierra, A. Soler, M. Nadal and J. L. Domingo, Climate change impact on the PAH photodegradation in soils: Characterization and metabolites identification, Environ. Int., 2016, 89 –90, 155–165.

    Article  PubMed  CAS  Google Scholar 

  186. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: Impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, 182–198.

    Article  CAS  PubMed  Google Scholar 

  187. R. G. Zepp, M. Cyterski, K. Wong, M. Molina, O. Georgacopoulos, B. Acrey, G. Whelan and R. Parmar, Biological weighting functions for evaluating the role of sunlight-induced inactivation of coliphages at selected beaches and nearby tributaries, Environ. Sci. Technol., 2018, 52, 13068–13076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. M. B. McConville, T. D. Hubert and C. K. Remucal, Direct photolysis rates and transformation pathways of the lampricides TFM and niclosamide in simulated sunlight, Environ. Sci. Technol., 2016, 50, 9998–10006.

  189. M. B. McConville, S. P. Mezyk and C. K. Remucal, Indirect photodegradation of the lampricides TFM and niclosamide, Environ. Sci.: Processes Impacts, 2017, 19, 1028–1039.

    CAS  Google Scholar 

  190. K. McNeill and S. Canonica, Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties, Environ. Sci.: Processes Impacts, 2016, 18, 1381–1399.

    CAS  Google Scholar 

  191. A. M. Grannas, Photochemistry of Organic Pollutants in/ on Snow and Ice, in Implications and Consequences of Anthropogenic Pollution in Polar Environments, ed. R. Kallenborn, Springer, Berlin, Heidelberg, 2016, pp. 41–58.

    Book  Google Scholar 

  192. F. L. Rosario-Ortiz and S. Canonica, Probe compounds to assess the photochemical activity of dissolved organic matter, Environ. Sci. Technol., 2016, 50, 12532–12547.

  193. J. E. Ukpebor and C. J. Halsall, Effects of dissolved water constituents on the photodegradation of fenitrothion and diazinon, Water, Air, Soil Pollut, 2012, 223, 655–666.

    Article  CAS  Google Scholar 

  194. L. K. Ge, C. Halsall, C. E. Chen, P. Zhang, Q. Q. Dong and Z. W. Yao, Exploring the aquatic photodegradation of two ionisable fluoroquinolone antibiotics - Gatifloxacin and balofloxacin: Degradation kinetics, photobyproducts and risk to the aquatic environment, Sci. Total Environ., 2018, 633, 1192–1197.

    Article  CAS  PubMed  Google Scholar 

  195. W.-C. Hou, W. M. Henderson, I. Chowdhury, D. G. Goodwin, X. J. Chang, S. Martin, D. H. Fairbrother, D. Bouchard and R. G. Zepp, The contribution of indirect photolysis to the degradation of graphene oxide in sunlight, Carbon, 2016, 110, 426–437.

    Article  CAS  Google Scholar 

  196. W. Wohlleben, C. Kingston, J. Carter, E. Sahle-Demessie, S. Vázquez-Campos, B. Acrey, C.-Y. Chen, E. Walton, H. Egenolf, P. Müller and R. Zepp, NanoRelease: Pilot interlaboratory comparison of a weathering protocol applied to resilient and labile polymers with and without embedded carbon nanotubes, Carbon, 2017, 113, 346–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. W. Wohlleben and N. Neubauer, Quantitative rates of release from weathered nanocomposites are determined across 5 orders of magnitude by the matrix, modulated by the embedded nanomaterial, NanoImpact, 2016, 1, 39–45.

    Article  Google Scholar 

  198. A. L. Andrady, A. Torikai, H. H. Redhwi, K. K. Pandey and P. Gies, Consequences of stratospheric ozone depletion and climate change on the use of materials, Photochem. Photobiol. Sci., 2015, 14, 170–184.

    Article  CAS  PubMed  Google Scholar 

  199. J. N. Hahladakis, C. A. Velis, R. Weber, E. Iacovidou and P. Purnell, An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling, J. Hazard. Matter., 2018, 344, 179–199.

    Article  CAS  Google Scholar 

  200. L. Hermabessiere, A. Dehaut, I. Paul-Pont, C. Lacroix, R. Jezequel, P. Soudant and G. Duflos, Occurrence and effects of plastic additives on marine environments and organisms: A review, Chemosphere, 2017, 182, 781–793.

    Article  CAS  PubMed  Google Scholar 

  201. C. P. Ward, C. M. Sharpless, D. L. Valentine, D. P. French-McCay, C. Aeppli, H. K. White, R. P. Rodgers, K. M. Gosselin, R. K. Nelson and C. M. Reddy, Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil, Environ. Sci. Technol., 2018, 52, 1797–1805.

  202. B. H. Harriman, P. Zito, D. C. Podgorsld, M. A. Tarr and J. M. Suflita, Impact of photooxidation and biodegradation on the fate of oil spilled during the Deepwater Horizon Incident: Advanced stages of weathering, Environ. Sci. Technol., 2017, 51, 7412–7421.

    Article  CAS  PubMed  Google Scholar 

  203. A. M. Michalak, E. J. Anderson, D. Beletsky, S. Boland, N. S. Bosch, T B. Bridgeman, J. D. Chaffin, K. Cho, R. Confesor and I. Daloğlu, Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 6448–6452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. M. M. Steffen, B. S. Belisle, S. B. Watson, G. L. Boyer and S. W. Wilhelm, Status, causes and controls of cyanobacterial blooms in Lake Erie, J. Great Lakes Res., 2014, 40, 215–225.

    Article  CAS  Google Scholar 

  205. H. W. Paerl and T. G. Otten, Blooms bite the hand that feeds them, Science, 2013, 342, 433–434.

    Article  CAS  PubMed  Google Scholar 

  206. C. Dziallas and H.-P. Grossart, Increasing oxygen radicals and water temperature select for toxic Microcystis sp., PLoS One, 2011, 6, e25569.

  207. Y. Zilliges, J.-C. Kehr, S. Meissner, K. Ishida, S. Mikkat, M. Hagemann, A. Kaplan, T. Börner and E. Dittmann, The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions, PLoS One, 2011, 6, e17615.

  208. M. A. Berry, T. W. Davis, R. M. Cory, M. B. Duhaime, T. H. Johengen, G. W. Kling, J. A. Marino, P. A. Den Uyl, D. Gossiaux and G. J. Dick, Cyanobacterial harmful algal blooms are a biological disturbance to western Lake Erie bacterial communities, Environ. Microbiol., 2017, 19, 1149–1162.

    Article  CAS  PubMed  Google Scholar 

  209. R. Cory, T. Davis, G. Dick, T. Johengen, V. Denef, M. Berry, S. Page, S. Watson, K. Yuhas and G. Kling, Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie, Front. Mar. Sci., 2016, 3, 54.

    Article  Google Scholar 

  210. T. B. Bittar, A. A. H. Vieira, A. Stubbins and K. Mopper, Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa, Limnol. Oceanogr., 2015, 60, 1172–1194.

    Article  Google Scholar 

  211. R. M. Lucas, S. Yazar, A. R. Young, M. Norval, F. R. de Gruijl, Y. Takizawa, L. E. Rhodes, C. A. Sinclair and R. E. Neale, Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate, Photochem. Photobiol. Sci., 2019, 18, DOI:10.1039/C8PP90060D.

  212. M. Bodrato and D. Vione, APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters, Environ. Sci.: Processes Impacts, 2014, 16, 732–740.

    CAS  Google Scholar 

  213. T. Kohn, M. J. Mattle, M. Minella and D. Vione, A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters, Water Res., 2016, 88, 912–922.

    Article  CAS  PubMed  Google Scholar 

  214. M. T. Nguyen, A. I. Silverman and K. L. Nelson, Sunlight inactivation of MS2 coliphage in the absence of photosensitizers: Modeling the endogenous inactivation rate using a photoaction spectrum, Environ. Sci. Technol., 2014, 48, 3891–3898.

  215. M. Minella, V. Maurino, C. Minero and D. Vione, A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants, Chemosphere, 2016, 162, 91–98.

    Article  CAS  PubMed  Google Scholar 

  216. A. I. Silverman, M. T. Nguyen, I. E. Schilling, J. Wenk and K. L. Nelson, Sunlight inactivation of viruses in open-water unit process treatment wetlands: modeling endogenous and exogenous inactivation rates, Environ. Sci. Technol., 2015, 49, 2757–2766.

  217. A. I. Silverman and K. L. Nelson, Modeling the endogenous sunlight inactivation rates of laboratory strain and wastewater E. coli and Enterococci using biological weighting functions, Environ. Sci. Technol., 2016, 50, 12292–12301.

  218. P. Avetta, D. Fabbri, M. Minella, M. Brigante, V. Maurino, C. Minero, M. Pazzi and D. Vione, Assessing the phototransformation of diclofenac, clofibric acid and naproxen in surface waters: model predictions and comparison with field data, Water Res., 2016, 105, 383–394.

    Article  CAS  PubMed  Google Scholar 

  219. B. Koehler, F. Barsotti, M. Minella, T. Landelius, C. Minero, L. J. Tranvik and D. Vione, Simulation of photoreactive transients and of photochemical transformation of organic pollutants in sunlit boreal lakes across 14 degrees of latitude: A photochemical mapping of Sweden, Water Res., 2018, 129, 94–104.

    Article  CAS  PubMed  Google Scholar 

  220. M. J. Mattle, D. Vione and T. Kohn, Conceptual model and experimental framework to determine the contributions of direct and indirect photoreactions to the solar disinfection of MS2, phiX174, and adenovirus, Environ. Sci. Technol., 2015, 49, 334–342.

    Article  CAS  PubMed  Google Scholar 

  221. A. I. Silverman, B. M. Peterson, A. B. Boehm, K. McNeill and K. L. Nelson, Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers, Environ. Sci. Technol., 2013, 47, 1870–1878.

    Article  CAS  PubMed  Google Scholar 

  222. K. P. Mangalgiri and L. Blaney, Elucidating the stimulatory and inhibitory effects of dissolved organic matter from poultry litter on photodegradation of antibiotics, Environ. Sci. Technol., 2017, 51, 12310–12320.

    Article  CAS  PubMed  Google Scholar 

  223. M. Minella, B. Leoni, N. Salmaso, L. Savoye, R. Sommaruga and D. Vione, Long-term trends of chemical and modelled photochemical parameters in four Alpine lakes, Sci. Total Environ., 2016, 541, 247–256.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sulzberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulzberger, B., Austin, A.T., Cory, R.M. et al. Solar UV radiation in a changing world: roles of cryosphere—land—water—atmosphere interfaces in global biogeochemical cycles. Photochem Photobiol Sci 18, 747–774 (2019). https://doi.org/10.1039/c8pp90063a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp90063a

Navigation