Skip to main content
Log in

Photodynamic properties of aza-analogues of phthalocyanines

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The replacement of benzene rings in phthalocyanines with various N-heterocycles produces a number of aza-analogues, azaphthalocyanines. This review summarizes their properties important for photodynamic therapy with a focus on (but not limited to) the most studied derivatives, i.e. tetrapyrazinoporphyrazines, tetra(2,3-pyrido)porphyrazines and tetra(3,4-pyrido)porphyrazines. Specifically, the spectral properties in both organic and aqueous solutions are discussed, with an emphasis on the prevention of undesirable aggregation, which typically leads to a loss of the photodynamic effects. Photophysical properties, such as the quantum yield of singlet oxygen production, may provide insights into the potential of azaphthalocyanines to cause cell death, whereas fluorescence quantum yields may refer to their role in cancer visualization. The main part of this review summarizes published results on the in vitro evaluation of these aza-analogues for anticancer, antifungal, and antimicrobial treatments as well as their interactions with biological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. J. MacDonald and T. J. Dougherty, Basic principles of photodynamic therapy, J. Porphyrins Phthalocyanines, 2001, 5, 105–129.

    CAS  Google Scholar 

  2. J. M. Dabrowski and L. G. Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment, Photochem. Photobiol. Sci., 2015, 14, 1765–1780.

    Article  CAS  PubMed  Google Scholar 

  3. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, Photodynamic Therapy of Cancer: An Update, Ca-Cancer J. Clin., 2011, 61, 250–281.

    Google Scholar 

  4. D. van Straten, V. Mashayekhi, H. S. de Bruijn, S. Oliveira and D. J. Robinson, Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions, Cancers, 2017, 9, 54.

    Article  CAS  Google Scholar 

  5. X. Li, B.-D. Zheng, X.-H. Peng, S.-Z. Li, J.-W. Ying, Y. Zhao, J.-D. Huang and J. Yoon, Phthalocyanines as medicinal photosensitizers: Developments in the last five years, Coord. Chem. Rev., 2017, DOI: 10.1016/j.ccr.2017.08.003, in press.

    Google Scholar 

  6. H. Abrahamse and M. R. Hamblin, New photosensitizers for photodynamic therapy, Biochem. J., 2016, 473, 347–364.

    Article  CAS  PubMed  Google Scholar 

  7. Handbook of Porphyrin Science, ed, K. M. Kadish, K. M. Smith and R. Guilard, World Scientific Publishing, Singapore, 2010.

    Google Scholar 

  8. C. C. Leznoff and A. B. P. Lever, Phthalocyanines Properties and Applications, Wiley, 1996, vol. 4, 536 p.

    Google Scholar 

  9. G. Schnurpfeil, A. K. Sobbi, W. Spiller, H. Kleisch and D. Wohrle, Photo-oxidative Stability and its Correlation with Semi-empirical MO Calculations of Various Tetraazaporphyrin Derivatives in Solution, J. Porphyrins Phthalocyanines, 1997, 01, 159–167.

    Article  CAS  Google Scholar 

  10. I. Seotsanyana-Mokhosi, N. Kuznetsova and T. Nyokong, Photochemical studies of tetra-2,3-pyridinoporphyrazines, J. Photochem. Photobiol., A, 2001, 140, 215–222.

    Article  CAS  Google Scholar 

  11. I. Spasojevic and I. Batinic-Haberle, Manganese(III) com-plexes with porphyrins and related compounds as cata-lytic scavengers of superoxide, Inorg. Chim. Acta, 2001, 317, 230–242.

    Article  CAS  Google Scholar 

  12. J. Shao, K. Richards, D. Rawlins, B. Han and C. A. Hansen, Synthesis, electrochemistry, spectroelectro-chemistry and catalytic properties in DDT reductive dechlorinationin of iron(II) phthalocyanine, 2,3-and 3,4-tetrapyridinoporphyrazine complexes, J. Porphyrins Phthalocyanines, 2013, 17, 317–330.

    Article  CAS  Google Scholar 

  13. E. Safaei, S. Sobhani and N. Razavi, Efficient synthesis of 2-indolyl-1-nitroalkanes catalyzed by tetramethyl-tetra-3,4-pyridinoporphyrazinato copper(II) methyl sulfate, J. Porphyrins Phthalocyanines, 2012, 16, 227–234.

    Article  CAS  Google Scholar 

  14. S. Sobhani, E. Safaei, M. Asadi, F. Jalili and Z. Tashrifi, Efficient synthesis of secondary and primary dialkyl a-aminophosphonates catalyzed by tetramethyl-tetra-3,4-pyridinoporphyrazinato copper(II) methyl sulfate under solvent-free conditions, J. Porphyrins Phthalocyanines, 2008, 12, 849–856.

    Article  CAS  Google Scholar 

  15. A. Abbaspour, M. Asadi, A. Ghaffarinejad and E. Safaei, A selective modified carbon paste electrode for determi-nation of cyanide using tetra-3,4-pyridinoporphyrazinato-cobalt(II), Talanta, 2005, 66, 931–936.

    Article  CAS  PubMed  Google Scholar 

  16. A. Abbaspour, A. Ghaffarinejad and E. Safaei, Determination of l-histidine by modified carbon paste electrode using tetra-3,4-pyridinoporphirazinatocopper (II), Talanta, 2004, 64, 1036–1040.

    Article  CAS  PubMed  Google Scholar 

  17. M. P. Donzello, C. Ercolani, V. Novakova, P. Zimcik and P. A. Stuzhin, Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural infor-mation, Coord. Chem. Rev., 2016, 309, 107–179.

    Article  CAS  Google Scholar 

  18. V. Novakova, M. P. Donzello, C. Ercolani, P. Zimcik and P. A. Stuzhin, Tetrapyrazinoporphyrazines and their metal derivatives. Part II: Electronic structure, electrochemical, spectral, photophysical and other application related pro-perties, Coord. Chem. Rev., 2018, 361, 1–73.

    Article  CAS  Google Scholar 

  19. P. Zimcik, V. Novakova, M. Miletin and K. Kopecky, Azaphthalocyanines containing pyrazine rings with focus on the alkylheteroatom, aryl and heteroaryl substitution and properties important in photodynamic therapy, Macroheterocyles, 2008, 1, 21–29.

    Article  CAS  Google Scholar 

  20. N. Kobayashi, Dimers, trimers and oligomers of phthalo-cyanines and related compounds, Coord. Chem. Rev., 2002, 227, 129–152.

    Article  CAS  Google Scholar 

  21. N. Kobayashi and W. A. Nevin, Optically active tetrapyrazi-noporphyrazines and their circular dichroism in mono-meric and dimeric forms, Chem. Lett., 1998, 851–852.

    Google Scholar 

  22. N. Kobayashi, J. Rizhen, S. Nakajima, T. Osa and H. Hino, Spectroscopy and Electrochemistry of a Monomer and Sandwich Dimer of Lutetium Tetra-tert-Butylpyrazinoporphyrazine, Chem. Lett., 1993, 185–188.

    Google Scholar 

  23. T. Hayashi, A. Ishihara, T. Nagai, M. Arao, H. Imai, Y. Kohno, K. Matsuzawa, S. Mitsushima and K.-I. Ota, Temperature dependence of oxygen reduction mechanism on a titanium oxide-based catalyst made from oxy-tita-nium tetra-pyrazino-porphyrazine using carbon nano-tubes as support in acidic solution, Electrochim. Acta, 2016, 209, 1–6.

    Article  CAS  Google Scholar 

  24. M. Piskin, N. Öztürk and M. Durmus, Spectroscopic and electrochemical behavior of the novel tetra-2-methyl-pyr-azinoporphyrazines, J. Mol. Struct., 2017, 1149, 893–899.

    Article  CAS  Google Scholar 

  25. V. Novakova, L. Lochman, I. Zajicova, K. Kopecky, M. Miletin, K. Lang, K. Kirakci and P. Zimcik, Azaphthalocyanines: Red Fluorescent Probes for Cations, Chem. - Eur. J., 2013, 19, 5025–5028.

    Article  CAS  PubMed  Google Scholar 

  26. V. Novakova, M. Laskova, H. Vavrickova and P. Zimcik, Phenol-Substituted Tetrapyrazinoporphyrazines: pH-Dependent Fluorescence in Basic Media, Chem. - Eur. J., 2015, 21, 14382–14392.

    Article  CAS  PubMed  Google Scholar 

  27. L. Lochman, J. Svec, J. Roh, K. Kirakci, K. Lang, P. Zimcik and V. Novakova, Metal-Cation Recognition in Water by a Tetrapyrazinoporphyrazine-Based Tweezer Receptor, Chem. - Eur. J., 2016, 22, 2417–2426.

    Article  CAS  PubMed  Google Scholar 

  28. L. Lochman, P. Zimcik, I. Klimant, V. Novakova and S. M. Borisov, Red-emitting CO2 sensors with tunable dynamic range based on pH-sensitive azaphthalocyanine indicators, Sens. Actuators, B, 2017, 246, 1100–1107.

    Article  CAS  Google Scholar 

  29. L. Lochman, J. Svec, J. Roh and V. Novakova, The role of the size of aza-crown recognition moiety in azaphthalocya-nine fluorescence sensors for alkali and alkaline earth metal cations, Dyes Pigm., 2015, 121, 178–187.

    Article  CAS  Google Scholar 

  30. P. Gregory and C. E. Foster, Composition containing an azaphthalocyanine and use in ink-jet printing inks and ink cartridges, WO/2002/034844, PCT/GB2001/004374, Avecia Limited, UK, 2002, 22 p.

    Google Scholar 

  31. V. Novakova, P. Reimerova, J. Svec, D. Suchan, M. Miletin, H. Rhoda, V. N. Nemykin and P. Zimcik, Systematic inves-tigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core, Dalton Trans., 2015, 44, 13220–13233.

    Article  CAS  PubMed  Google Scholar 

  32. C. J. Song, C. K. Jang, W. Yao and J. Y. Jaung, Synthesis and spectral characterisation of dicyanopyrazine-related cyanoheterocycles, J. Chem. Res., 2013, 37, 268–272.

    Article  CAS  Google Scholar 

  33. V. Novakova, B. Malachwiej, R. Sebl, M. Miletin and P. Zimcik, Tetra(pyrazino[2,3-b]pyrazino)porphyrazines: Synthesis, absorption, photophysical and electrochemical properties of strongly electron-deficient macrocycles, J. Porphyrins Phthalocyanines, 2017, 21, 302–310.

    Article  CAS  Google Scholar 

  34. C. J. Song, C. K. Jang, J. M. Park, C. Y. Jung, W. Yao, Y. J. Gu and J. Y. Jaung, Synthesis and spectral properties of tetraquinoxalinoporphyrazines containing benzocrown-ether group, J. Porphyrins Phthalocyanines, 2013, 17, 1134–1138.

    Article  CAS  Google Scholar 

  35. H. Yanagi, Y. Kanbayashi, D. Schlettwein, D. Woehrle and N. R. Armstrong, Photoelectrochemical Investigations on Naphthalocyanine Derivatives in Thin Films, J. Phys. Chem., 1994, 98, 4760–4766.

    Article  CAS  Google Scholar 

  36. E. A. Ough, M. J. Stillman and K. A. M. Creber, Absorption and magnetic circular dichroism spectra of nitrogen hom-ologues of magnesium and zinc phthalocyanine, Can. J. Chem., 1993, 71, 1898–1909.

    Article  CAS  Google Scholar 

  37. P. A. Stuzhin, Theoretical AM1 study of acidity of porphyr-ins, azaporphyrins and porphyrazines, J. Porphyrins Phthalocyanines, 2003, 07, 813–832.

    Article  CAS  Google Scholar 

  38. P. A. Stuzhin and C. Ercolani, Porphyrazines with Annul ated Heterocycles, in The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, New York, 2003, pp. 263–364.

    Chapter  Google Scholar 

  39. P. A. Stuzhin, E. M. Bauer and C. Ercolani, Tetrakis(thia-diazole)porphyrazines. 1. Syntheses and properties of tetrakis(thiadiazole)porphyrazine and its magnesium and copper derivatives, Inorg. Chem., 1998, 37, 1533–1539.

    Article  CAS  Google Scholar 

  40. E. M. Bauer, D. Cardarilli, C. Ercolani, P. A. Stuzhin and U. Russo, Tetrakis(thiadiazole)porphyrazines. 2. Metal complexes with Mn(I), Fe(II), Co(II), Ni(II), and Zn(II), Inorg. Chem., 1999, 38, 6114–6120.

    Article  CAS  PubMed  Google Scholar 

  41. Y. Miyoshi, K. Takahashi, T. Fujimoto, H. Yoshikawa, M. M. Matsushita, Y. Ouchi, M. Kepenekian, V. Robert, M. P. Donzello, C. Ercolani and K. Awaga, Crystal Structure, Spin Polarization, Solid-State Electrochemistry, and High n-Type Carrier Mobility of a Paramagnetic Semiconductor: Vanadyl Tetrakis(thiadiazole)porphyr-azine, Inorg. Chem., 2012, 51, 456–462.

    Article  CAS  PubMed  Google Scholar 

  42. M. P. Donzello, E. Viola, M. Giustini, C. Ercolani and F. Monacelli, Tetrakis(thiadiazole)porphyrazines. 8. Singlet oxygen production, fluorescence response and liposomal incorporation of tetrakis(thiadiazole)porphyrazine macro-cycles [TTDPzM] (M = MgII(H2O), ZnII, AlIIICl, GaIIICl, CdII, CuII, 2HI), Dalton Trans., 2012, 41, 6112–6121.

    Article  PubMed  CAS  Google Scholar 

  43. M. Fujimori, Y. Suzuki, H. Yoshikawa and K. Awaga, Packing motifs in porphyrazine macrocycles carrying per-ipherally annulated thiadiazole rings: Crystal growths of metal-free and cobalt tetrakis(1,2,5-thiadiazole)porphyr-azines, Angew. Chem., Int. Ed., 2003, 42, 5863–5865.

    Article  CAS  Google Scholar 

  44. M. P. Donzello, C. Ercolani, K. M. Kadish, G. Ricciardi, A. Rosa and P. A. Stuzhin, Tetrakis(thiadiazole) porphyrazines. 5. Electrochemical and DFT/TDDFT Studies of the Free-Base Macrocycle and Its MgII, ZnII, and CuII Complexes, Inorg. Chem., 2007, 46, 4145–4157.

    Article  CAS  PubMed  Google Scholar 

  45. E. M. Bauer, C. Ercolani, P. Galli, I. A. Popkova and P. A. Stuzhin, Tetrakis(selenodiazole)porphyrazines. 1: Tetrakis(selenodiazole)porphyrazine and its Mg(II) and Cu(II) derivatives. Evidence for their conversion to tetrakis (pyrazino)porphyrazines through octaaminoporphyr-azines, J. Porphyrins Phthalocyanines, 1999, 3, 371–379.

    Article  CAS  Google Scholar 

  46. S. Angeloni, E. M. Bauer, C. Ercolani, I. A. Popkova and P. A. Stuzhin, Tetrakis(selenodiazole)porphyrazines. 2: Metal complexes with Mn(II), Co(II), Ni(II), and Zn(II), J. Porphyrins Phthalocyanines, 2001, 5, 881–888.

    Article  CAS  Google Scholar 

  47. P. A. Stuzhin, M. S. Mikhailov, E. S. Yurina, M. I. Bazanov, O. I. Koifman, G. L. Pakhomov, V. V. Travkin and A. A. Sinelshchikova, First tellurium-containing phthalo-cyanine analogues: strong effect of tellurium on spectral, redox and conductivity properties of porphyrazines with annulated chalcogenodiazole ring(s), Chem. Commun., 2012, 48, 10135–10137.

    Article  CAS  Google Scholar 

  48. K. Sakamoto, T. Kato, T. Kawaguchi, E. Ohno-Okumura, T. Urano, T. Yamaoka, S. Suzuki and M. J. Cook, Photosensitizer efficacy of non-peripheral substituted alkylbenzopyridoporphyrazines for photodynamic therapy of cancer, J. Photochem. Photobiol., A, 2002, 153, 245–253.

    Article  CAS  Google Scholar 

  49. K. Sakamoto, E. Ohno-Okumura, T. Kato, T. Kawaguchi and M. J. Cook, Laser-flash photolysis of dialkylbenzodi-pyridoporphyrazines, J. Porphyrins Phthalocyanines, 2003, 7, 83–88.

    Article  CAS  Google Scholar 

  50. K. Kopecky, V. Novakova, M. Miletin, R. Kucera and P. Zimcik, Solid-Phase Synthesis of Azaphthalocyanine-Oligonucleotide Conjugates and Their Evaluation As New Dark Quenchers of Fluorescence, Bioconjugate Chem., 2010, 21, 1872–1879.

    Article  CAS  Google Scholar 

  51. N. V. Tverdova, N. I. Giricheva, D. S. Savelyev, M. S. Mikhailov, N. Vogt, O. I. Koifman, P. A. Stuzhin and G. V. Girichev, Molecular Structure of Tetrakis(1,2,5-thia-diazolo)-porphyrazinatozinc(II) in Gaseous Phase, Macroheterocyles, 2017, 10, 27–30.

    Article  CAS  Google Scholar 

  52. E. A. Dupouy, D. Lazzeri and E. N. Durantini, Photodynamic activity of cationic and non-charged Zn(ii) tetrapyridinoporphyrazine derivatives: biological conse-quences in human erythrocytes and Escherichia coli, Photochem. Photobiol. Sci., 2004, 3, 992–998.

    Article  CAS  PubMed  Google Scholar 

  53. U. Michelsen, H. Kliesch, G. Schnurpfeil, A. K. Sobbi and D. Wohrle, Unsymmetrically substituted benzonaphtho-porphyrazines: A new class of cationic photosensitizers for the photodynamic therapy of cancer, Photochem. Photobiol., 1996, 64, 694–701.

    Article  CAS  PubMed  Google Scholar 

  54. P. Zimcik, V. Novakova, K. Kopecky, M. Miletin, R. Z. Uslu Kobak, E. Svandrlikova, L. Vâchovâ and K. Lang, Magnesium Azaphthalocyanines: An Emerging Family of Excellent Red-Emitting Fluorophores, Inorg. Chem., 2012, 51, 4215–4223.

    Article  CAS  PubMed  Google Scholar 

  55. E. A. Lukyanets and V. N. Nemykin, The key role of peri-pheral substituents in the chemistry of phthalocyanines and their analogs, J. Porphyrins Phthalocyanines, 2010, 14, 1–40.

    Article  CAS  Google Scholar 

  56. T. C. Tempesti, M. G. Alvarez and E. N. Durantini, Synthesis and photodynamic properties of amphiphilic A(3)B-phthalocyanine derivatives bearing N-heterocycles as potential cationic phototherapeutic agents, Dyes Pigm., 2011, 91, 6–12.

    Article  CAS  Google Scholar 

  57. L. Vachova, M. Machacek, R. Kucera, J. Demuth, P. Cermak, K. Kopecky, M. Miletin, A. Jedlickova, T. Simunek, V. Novakova and P. Zimcik, Heteroatom-sub-stituted tetra(3,4-pyrido)porphyrazines: a stride toward near-infrared-absorbing macrocycles, Org. Biomol. Chem., 2015, 13, 5608–5612.

    Article  CAS  PubMed  Google Scholar 

  58. M. Machacek, J. Demuth, P. Cermak, M. Vavreckova, L. Hruba, A. Jedlickova, P. Kubat, T. Simunek, V. Novakova and P. Zimcik, Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers, J. Med. Chem., 2016, 59, 9443–9456.

    Article  CAS  PubMed  Google Scholar 

  59. S. Makhseed, A. Tuhl, J. Samuel, P. Zimcik, N. Al-Awadi and V. Novakova, New highly soluble phenoxy-substituted phthalocyanine and azaphthalocyanine derivatives: Synthesis, photochemical and photophysical studies and atypical aggregation behavior, Dyes Pigm., 2012, 95, 351–357.

    Article  CAS  Google Scholar 

  60. S. V. Kudrevich, M. G. Galpern and J. E. van Lier, Synthesis of Octacarboxytetra(2,3-pyrazino)porphyrazine: Novel Water Soluble Photosensitizers for Photodynamic Therapy, Synthesis, 1994, 779–781.

    Google Scholar 

  61. M. Machacek, J. Kollar, M. Miletin, R. Kucera, P. Kubat, T. Simunek, V. Novakova and P. Zimcik, Anionic hexadeca-carboxylate tetrapyrazinoporphyrazine: synthesis and in vitro photodynamic studies of a water-soluble, non-aggre-gating photosensitizer, RSCAdv., 2016, 6, 10064–10077.

    CAS  Google Scholar 

  62. E. V. Kudrik, V. N. Shishkin and G. P. Shaposhnikov, Iron (II) octaphenyltetrapyrazinoporphyrazinate extra com-plexes: Synthesis and some properties, Russ. J. Coord. Chem., 2005, 31, 501–505.

    Article  CAS  Google Scholar 

  63. E. V. Kudrik, A. Theodoridis, R. van Eldik and S. V. Makarov, Kinetics and mechanism of the Co(II)- assisted oxidation of thioureas by dioxygen, Dalton Trans., 2005, 1117–1122.

    Google Scholar 

  64. P. Zimcik, M. Miletin, H. Radilova, V. Novakova, K. Kopecky, J. Svec and E. Rudolf, Synthesis, Properties and In Vitro Photodynamic Activity of Water-soluble Azaphthalocyanines and Azanaphthalocyanines, Photochem. Photobiol., 2010, 86, 168–175.

    Article  CAS  PubMed  Google Scholar 

  65. P. Zimcik, M. Miletin, Z. Musil, K. Kopecky, L. Kubza and D. Brault, Cationic azaphthalocyanines bearing aliphatic tertiary amino substituents-Synthesis, singlet oxygen pro-duction and spectroscopic studies, J. Photochem. Photobiol., A, 2006, 183, 59–69.

    Article  CAS  Google Scholar 

  66. B. Ghazal, M. Machacek, M. A. Shalaby, V. Novakova, P. Zimcik and S. Makhseed, Phthalocyanines and Tetrapyrazinoporphyrazines with Two Cationic Donuts: High Photodynamic Activity as a Result of Rigid Spatial Arrangement of Peripheral Substituents, J. Med. Chem., 2017, 60, 6060–6076.

    Article  CAS  PubMed  Google Scholar 

  67. R. Anand, F. Manoli, I. Manet, M. P. Donzello, E. Viola, M. Malanga, L. Jicsinszky, E. Fenyvesi and S. Monti, Fluorescent cyclodextrin carriers for a water soluble Zn-II pyrazinoporphyrazine octacation with photosensitizer potential, RSCAdv., 2014, 4, 26359–26367.

    CAS  Google Scholar 

  68. J. M. Park, W. Yao, C. Y. Jung, J. H. Cho, D. H. Kim and J. Y. Jaung, Cationic dipyridylamine substituted zinc tetra-pyrazinoporphyrazine derivatives for photodynamic therapy, J. Photochem. Photobiol., A, 2017, 346, 126–132.

    Article  CAS  Google Scholar 

  69. V. Novakova, R. Z. Uslu Kobak, R. Kucera, K. Kopecky, M. Miletin, V. Krepsova, J. Ivincova and P. Zimcik, The effect of the number of carbohydrate moieties on the azaphthalocyanine properties, Dalton Trans., 2012, 41, 10596–10604.

    Article  CAS  PubMed  Google Scholar 

  70. M. P. Donzello, D. Vittori, E. Viola, L. H. Zeng, Y. Cui, K. M. Kadish, L. Mannina and C. Ercolani, Tetra-2,3-pyra-zinoporphyrazines with externally appended pyridine rings. 16. A rare class of uncharged water soluble com-plexes: UV-vis spectral, redox, and photochemical pro-perties, J. Porphyrins Phthalocyanines, 2015, 19, 903–919.

    Article  CAS  Google Scholar 

  71. C. J. Song, J. M. Park, W. Yao, C. Y. Jung and J. Y. Jaung, Synthesis and photophysical properties of silicon(IV) tetrapyrazinoporphyrazines axially substituted with ethylene glycol chains as potential photosensitizer, J. Porphyrins Phthalocyanines, 2015, 19, 967–972.

    Article  CAS  Google Scholar 

  72. T. C. Tempesti, J. C. Stockert and E. N. Durantini, Photosensitization Ability of a Water Soluble Zinc(II)tetra-methyltetrapyridinoporphyrazinium Salt in Aqueous Solution and Biomimetic Reverse Micelles Medium, J. Phys. Chem. B, 2008, 112, 15701–15707.

    Article  CAS  PubMed  Google Scholar 

  73. C. A. Suchetti and E. N. Durantini, Monomerization and photodynamic activity of Zn(II) tetraalkyltetrapyridinopor-phyrazinium derivatives in AOT reverse micelles, Dyes Pigm., 2007, 74, 630–635.

    Article  CAS  Google Scholar 

  74. A. Khalegh Bordbar, M. Davari, E. Safaei and V. Mirkhani, Aggregation and DNA binding characteristics of tetrakis (N,N′,N″,N′″-tetramethyltetra-3,4-pridino)porphyrazine cobalt(II), J. Porphyrins Phthalocyanines, 2007, 11, 139–147.

    Article  Google Scholar 

  75. M. M. Toyama, M. Franco, L. H. Catalani, K. Araki and H. E. Toma, Spectroelectrochemical and photophysical properties of a (3,4-pyridyl) porphyrazine supermolecule containing four [Ru(bipy)2Cl] + groups, J. Photochem. Photobiol., A, 1998, 118, 11–17.

    Article  CAS  Google Scholar 

  76. A. Tuhl, S. Makhseed, P. Zimcik, N. Al-Awadi, V. Novakova and J. Samuel, Heavy metal effects on physicochemical properties of non-aggregated azaphthalocyanine deriva-tives, J. Porphyrins Phthalocyanines, 2012, 16, 817–825.

    Article  CAS  Google Scholar 

  77. M. P. Donzello, E. Viola, C. Ercolani, Z. Fu, D. Futur and K. M. Kadish, Tetra-2,3-pyrazinoporphyrazines with Externally Appended Pyridine Rings. 12. New Heteropentanuclear Complexes Carrying Four Exocyclic Cis-platin-like Functionalities as Potential Bimodal (PDT/ Cis-platin) Anticancer Agents, Inorg. Chem., 2012, 51, 12548–12559.

    Article  CAS  PubMed  Google Scholar 

  78. M. P. Donzello, E. Viola, L. Mannina, M. Barteri, Z. Fu and C. Ercolani, Tetra-2,3-pyrazinoporphyrazines with exter-nally appended pyridine rings. 11. Photoactivity of a new Pt(II) pentanuclear macrocycle bearing four cisplatin-like functionalities and its related monoplatinated species, J. Porphyrins Phthalocyanines, 2011, 15, 984–994.

    Article  CAS  Google Scholar 

  79. M. P. Donzello, D. Vittori, E. Viola, I. Manet, L. Mannina, L. Cellai, S. Monti and C. Ercolani, Tetra-2,3-pyrazinopor-phyrazines with Externally Appended Pyridine Rings. 9. Novel Heterobimetallic Macrocycles and Related Hydrosoluble Hexacations as Potentially Active Photo/ Chemotherapeutic Anticancer Agents, Inorg. Chem., 2011, 50, 7391–7402.

    Article  CAS  PubMed  Google Scholar 

  80. A. Ogunsipe and T. Nyokong, Effects of central metal on the photophysical and photochemical properties of non-transition metal sulfophthalocyanine, J. Porphyrins Phthalocyanines, 2005, 9, 121–129.

    Article  CAS  Google Scholar 

  81. K. Lang, J. Mosinger and D. M. Wagnerova, Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy, Coord. Chem. Rev., 2004, 248, 321–350.

    Article  CAS  Google Scholar 

  82. V. Novakova, P. Hladik, T. Filandrova, I. Zajicova, V. Krepsova, M. Miletin, J. Lenco and P. Zimcik, Structural factors influencing the intramolecular charge transfer and photoinduced electron transfer in tetrapyrazinoporphyra-zines, Phys. Chem. Chem. Phys., 2014, 16, 5440–5446.

    Article  CAS  PubMed  Google Scholar 

  83. J. M. Park, C. Y. Jung, C. J. Song and J. Y. Jaung, Synthesis and photophysical properties of axially substituted silicon (IV) tetrapyrazinoporphyrazines, Inorg. Chem. Commun., 2015, 62, 64–66.

    Article  CAS  Google Scholar 

  84. V. Novakova, M. Miletin, K. Kopecky and P. Zimcik, Red-Emitting Dyes with Photophysical and Photochemical Properties Controlled by pH, Chem. - Eur. J., 2011, 17, 14273–14282.

    Article  CAS  PubMed  Google Scholar 

  85. K. Kopecky, V. Novakova, M. Miletin, R. Kucera and P. Zimcik, Synthesis of new azaphthalocyanine dark quencher and evaluation of its quenching efficiency with different fluorophores, Tetrahedron, 2011, 67, 5956–5963.

    Article  CAS  Google Scholar 

  86. M. Machacek, A. Cidlina, V. Novakova, J. Svec, E. Rudolf, M. Miletin, R. Kucera, T. Simunek and P. Zimcik, Far-Red-Absorbing Cationic Phthalocyanine Photosensitizers: Synthesis and Evaluation of the Photodynamic Anticancer Activity and the Mode of Cell Death Induction, J. Med. Chem., 2015, 58, 1736–1749.

    Article  CAS  PubMed  Google Scholar 

  87. E. H. Morkved, T. Andreassen, V. Novakova and P. Zimcik, Zinc azaphthalocyanines with thiophen-2-yl, 5-methyl-thiophen-2-yl and pyridin-3-yl peripheral substituents: Additive substituent contributions to singlet oxygen pro-duction, Dyes Pigm., 2009, 82, 276–285.

    Article  CAS  Google Scholar 

  88. G. De Mori, Z. Fu, E. Viola, X. H. Cai, C. Ercolani, M. P. Donzello and K. M. Kadish, Tetra-2,3-pyrazinopor-phyrazines with Externally Appended Thienyl Rings: Synthesis, UV-Visible Spectra, Electrochemical Behavior, and Photoactivity for the Generation of Singlet Oxygen, Inorg. Chem., 2011, 50, 8225–8237.

    Article  PubMed  CAS  Google Scholar 

  89. M. B. Spesia, M. Rovera and E. N. Durantini, Photodynamic inactivation of Escherichia coli and Streptococcus mitis by cationic zinc(II) phthalocyanines in media with blood derivatives, Eur. J. Med. Chem., 2010, 45, 2198–2205.

    Article  CAS  PubMed  Google Scholar 

  90. E. Viola, M. P. Donzello, F. Sciscione, K. Shah, C. Ercolani and G. Trigiante, Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 17. Photosensitizing properties and cellular effects of Znll octacationic and Znll/Ptll hexacationic macrocycles in aqueous media: Perspectives of multimodal anticancer potentialities, J. Photochem. Photobiol., B, 2017, 169, 101–109.

    Article  CAS  Google Scholar 

  91. K. S. Kim, C. J. Song, J. Y. Jaung and K. Na, Two arms hydrophilic photosensitizer conjugates with vitamin B for cancer-selective photodynamic therapy, Polym. Adv. Technol., 2017, 28, 443–448.

    Article  CAS  Google Scholar 

  92. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob. Agents Chemother., 2000, 44, 522–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. M. Merchat, J. D. Spikes, G. Bertoloni and G. Jori, Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, J. Photochem. Photobiol., B, 1996, 35, 149–157.

    Article  CAS  Google Scholar 

  94. G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. Vanlier, Photosensitizing activity of water-soluble and lipid-soluble phthalocyanines on Escherichia-coli, FEMS Microbiol. Lett., 1990, 71, 149–155.

    Article  CAS  Google Scholar 

  95. M. Miretti, R. Clementi, T. C. Tempesti and M. T. Baumgartner, Photodynamic inactivation of multi-resistant bacteria (KPC) using zinc(II) phthalocyanines, Bioorg. Med. Chem. Lett., 2017, 27, 4341–4344.

    Article  CAS  PubMed  Google Scholar 

  96. X. Ragas, X. He, M. Agut, M. Roxo-Rosa, A. R. Gonsalves, A. C. Serra and S. Nonell, Singlet Oxygen in Antimicrobial Photodynamic Therapy: Photosensitizer-Dependent Production and Decay in E. coli, Molecules, 2013, 18, 2712–2725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. L. Hassani, F. Hakimian, E. Safaei and Z. Fazeli, Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA, J. Mol. Struct., 2013, 1052, 221–227.

    Article  CAS  Google Scholar 

  98. E. Stingaciu and I. Sebe, Synthesis, Spectroscopic Properties and Antibacterial Activity of Copper Tetraalkyltetrapyridinoporphyrazinium Derivatives, Rev. Chim. (Bucharest, Rom.), 2010, 61, 66–69.

    CAS  Google Scholar 

  99. M. Asadi, A.-K. Bordbar, E. Safaei and J. Ghasemi, Interaction of some water-soluble metalloporphyrazines with human serum albumin, J. Mol. Struct., 2004, 705, 41–47.

    Article  CAS  Google Scholar 

  100. I. Manet, F. Manoli, M. P. Donzello, E. Viola, A. Masi, G. Andreano, G. Ricciardi, A. Rosa, L. Cellai, C. Ercolani and S. Monti, Pyrazinoporphyrazines with Externally Appended Pyridine Rings. 13. Structure, UV-Visible Spectral Features, and Noncovalent Interaction with DNA of a Positively Charged Binuclear (Zn-II/Pt-II) Macrocycle with Multimodal Anticancer Potentialities, Inorg. Chem., 2013, 52, 321–328.

    Article  CAS  PubMed  Google Scholar 

  101. I. Manet, F. Manoli, M. P. Donzello, C. Ercolani, D. Vittori, L. Cellai, A. Masi and S. Monti, Tetra-2,3-pyrazinoporphyr-azines with Externally Appended Pyridine Rings. 10. A Water-Soluble Bimetallic (Zn-II/Pt-II) Porphyrazine Hexacation as Potential Plurimodal Agent for Cancer Therapy: Exploring the Behavior as Ligand of Telomeric DNA G-Quadruplex Structures, Inorg. Chem., 2011, 50, 7403–7411.

    Article  CAS  PubMed  Google Scholar 

  102. I. Manet, F. Manoli, M. P. Donzello, E. Viola, G. Andreano, A. Masi, L. Cellai and S. Monti, A cationic Zn-II porphyra-zine induces a stable parallel G-quadruplex conformation in human telomeric DNA, Org. Biomol. Chem., 2011, 9, 684–688.

    Article  CAS  PubMed  Google Scholar 

  103. D. P. N. Goncalves, R. Rodriguez, S. Balasubramanian and J. K. M. Sanders, Tetramethylpyridiniumpor-phyrazines-a new class of G-quadruplex inducing and sta-bilising ligands, Chem. Commun., 2006, 4685–4687.

    Google Scholar 

  104. R. Rodriguez, G. D. Pantos, D. P. N. Gonçalves, J. K. M. Sanders and S. Balasubramanian, Ligand-Driven G-Quadruplex Conformational Switching By Using an Unusual Mode of Interaction, Angew. Chem., Int. Ed., 2007, 46, 5405–5407.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (grant no. 17-19094S). The authors would like to thank P. Stuzhin and T. Nyokong for providing the source spectral data for some compounds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petr Zimcik or Veronika Novakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miletin, M., Zimcik, P. & Novakova, V. Photodynamic properties of aza-analogues of phthalocyanines. Photochem Photobiol Sci 17, 1749–1766 (2018). https://doi.org/10.1039/c8pp00106e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00106e

Navigation