Issue 3, 2019

Kinetic Monte Carlo simulations of organic ferroelectrics

Abstract

Ferroelectrics find broad applications, e.g. in non-volatile memories, but the switching kinetics in real, disordered, materials is still incompletely understood. Here, we develop an electrostatic model to study ferroelectric switching using 3D Monte Carlo simulations. We apply this model to the prototypical small molecular ferroelectric trialkylbenzene-1,3,5-tricarboxamide (BTA) and find good agreement between the Monte Carlo simulations, experiments, and molecular dynamics studies. Since the model lacks any explicit steric effects, we conclude that these are of minor importance. While the material is shown to have a frustrated antiferroelectric ground state, it behaves as a normal ferroelectric under practical conditions due to the large energy barrier for switching that prevents the material from reaching its ground state after poling. We find that field-driven polarization reversal and spontaneous depolarization have orders of magnitude different switching kinetics. For the former, which determines the coercive field and is relevant for data writing, nucleation occurs at the electrodes, whereas for the latter, which governs data retention, nucleation occurs at disorder-induced defects. As a result, by reducing the disorder in the system, the polarization retention time can be increased dramatically while the coercive field remains unchanged.

Graphical abstract: Kinetic Monte Carlo simulations of organic ferroelectrics

Supplementary files

Article information

Article type
Paper
Submitted
29 Oct 2018
Accepted
18 Dec 2018
First published
18 Dec 2018
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2019,21, 1375-1383

Kinetic Monte Carlo simulations of organic ferroelectrics

T. D. Cornelissen, M. Biler, I. Urbanaviciute, P. Norman, M. Linares and M. Kemerink, Phys. Chem. Chem. Phys., 2019, 21, 1375 DOI: 10.1039/C8CP06716C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements