Issue 42, 2017

Thermal conductivity of multilayer dielectric films from molecular dynamics simulations

Abstract

Reducing heat dissipation across nanometer-thick dielectrics is critically important for the self-heating behavior of nanoelectronic devices such as phase change memory. In this paper, we perform molecular dynamics simulations to study the thermal conductivity of multilayer dielectric films consisting of SiO2 and Al2O3. We show that the thermal conductivity of SiO2/Al2O3 multilayer structures can be significantly reduced as compared to that of the bulk dielectrics. The thermal conductivity calculations of crystalline and amorphous multilayer structures with different period thicknesses are presented as well as the size effects. The results show the thermal transport across the crystalline SiO2/Al2O3 multilayer structures is dominated by diffuse interface scattering between thin films, while the internal phonon–phonon scattering dominates the thermal conductivity of amorphous multilayer structures. Thickness dependence are observed for the crystalline multilayer dielectric structures but not in the amorphous structures, which can be attributed to the phonon localization by the lattice termination/deformation at interfaces between crystalline films.

Graphical abstract: Thermal conductivity of multilayer dielectric films from molecular dynamics simulations

Article information

Article type
Paper
Submitted
20 Mar 2017
Accepted
01 May 2017
First published
16 May 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 26194-26201

Thermal conductivity of multilayer dielectric films from molecular dynamics simulations

L. Chen, N. Kumari, S. Chen and Y. Hou, RSC Adv., 2017, 7, 26194 DOI: 10.1039/C7RA03275G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements