Skip to main content
Log in

Metal-binding hydrazone photoswitches for visible light reactivity and variable relaxation kinetics

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The range of applications for photoswitching moieties is diverse, and the ability to design switches with variable photochemical and physical properties is consequently important for realizing their potential. Previously we reported on the photochromism of (E)-N′-(1-(2-hydroxyphenyl)ethylidene)isonicotinohydrazide (HAPI), an aroylhydrazone compound first developed as a transition metal chelator. Herein we report the synthesis of structurally related aroylhydrazone chelators and explore the effect of these modifications on their UVA, UVC and blue light photoreactivity, photostationary state composition, photoisomer thermal stability, and relative iron(iii) binding affinity. These findings will inform the next generation of aroylhydrazone photoswitches for metal-gated photoswitching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Tian, and S. Yang, Recent progresses on diarylethene based photochromic switches, Chem. Soc. Rev., 2004, 33, 85–97.

    Article  CAS  PubMed  Google Scholar 

  2. M. Irie, Diarylethenes for Memories and Switches, Chem. Rev., 2000, 100, 1685–1716.

    Article  CAS  PubMed  Google Scholar 

  3. G. Mayer, and A. Heckel, Biologically active molecules with a “light switch”, Angew. Chem., Int. Ed., 2006, 45, 4900–4921.

    Article  CAS  Google Scholar 

  4. W. Szymanski, J. M. Beierle, H. A. Kistemaker, W. A. Velema, and B. L. Feringa, Reversible photocontrol of biological systems by the incorporation of molecular photoswitches, Chem. Rev., 2013, 113, 6114–6178.

    Article  CAS  PubMed  Google Scholar 

  5. M. Natali, and S. Giordani, Molecular switches as photocontrollable “smart” receptors, Chem. Soc. Rev., 2012, 41, 4010–4029.

    Article  CAS  PubMed  Google Scholar 

  6. B. L. Feringa, Molecular Switches, Wiley Online Library, 2001.

    Book  Google Scholar 

  7. J. Bieth, N. Wassermann, S. M. Vratsanos, and B. F. Erlanger, Photoregulation of biological activity by photochromic reagents, IV. A model for diurnal variation of enzymic activity, Proc. Natl. Acad. Sci. U. S. A., 1970, 66, 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. I. Willner, S. Rubin, and A. Riklin, Photoregulation of papain activity through anchoring photochromic azo groups to the enzyme backbone, J. Am. Chem. Soc., 1991, 113, 3321–3325.

    Article  CAS  Google Scholar 

  9. B. Schierling, A. J. Noel, W. Wende, T. Hien le, E. Volkov, E. Kubareva, T. Oretskaya, M. Kokkinidis, A. Rompp, B. Spengler, and A. Pingoud, Controlling the enzymatic activity of a restriction enzyme by light, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 1361–1366.

    Article  CAS  PubMed  Google Scholar 

  10. A. A. Beharry, and G. A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev., 2011, 40, 4422–4437.

    Article  CAS  PubMed  Google Scholar 

  11. S. J. Sonawane, R. S. Kalhapure, and T. Govender, Hydrazone linkages in pH responsive drug delivery systems, Eur. J. Pharm. Sci., 2016, 99, 45–65.

    Article  PubMed  CAS  Google Scholar 

  12. S. Pramanik, and I. Aprahamian, Hydrazone Switch-Based Negative Feedback Loop, J. Am. Chem. Soc., 2016, 138, 15142–15145.

    Article  CAS  PubMed  Google Scholar 

  13. S. Dhers, J. Holub, and J.-M. Lehn, Coevolution and ratiometric behaviour in metal cation-driven dynamic covalent systems, Chem. Sci., 2017, 8, 2125–2130.

    Article  CAS  PubMed  Google Scholar 

  14. A. Hasheminasab, L. Wang, M. B. Dawadi, J. Bass, R. S. Herrick, J. J. Rack, and C. J. Ziegler, Induction of E/Z isomerization in a pendant metal-bound azobenzene: a synthetic, spectroscopic and theoretical study, Dalton Trans., 2015, 44, 15400–15403.

    Article  CAS  PubMed  Google Scholar 

  15. T. Yutaka, I. Mori, M. Kurihara, J. Mizutani, N. Tamai, T. Kawai, M. Irie, and H. Nishihara, Photoluminescence Switching of Azobenzene-Conjugated Pt(ii) Terpyridine Complexes by Trans−Cis Photoisomerization, Inorg. Chem., 2002, 41, 7143–7150.

    Article  CAS  PubMed  Google Scholar 

  16. C. J. Lin, Y. H. Liu, S. M. Peng, and J. S. Yang, Photoluminescence and trans–>cis photoisomerization of aminostyrene-conjugated phenylpyridine C N ligands and their complexes with platinum(ii): the styryl position and the amino substituent effects, J. Phys. Chem. B., 2012, 116, 8222–8232.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Beharry, O. Sadovski, L. Wong, V. Tropepe, and G. A. Woolley, Azobenzene Photo-switches for Cellular Applications, Biopolymers., 2011, 96, 431–431.

    Google Scholar 

  18. Y. Yang, R. P. Hughes, and I. Aprahamian, Near-infrared light activated azo-BF2 switches, J. Am. Chem. Soc., 2014, 136, 13190–13193.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Yang, R. P. Hughes, and I. Aprahamian, Visible light switching of a BF2-coordinated azo compound, J. Am. Chem. Soc., 2012, 134, 15221–15224.

    Article  CAS  PubMed  Google Scholar 

  20. M. Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry, and G. A. Woolley, Red-Shifting Azobenzene Photoswitches for in Vivo Use, Acc. Chem. Res., 2015, 48, 2662–2670.

    Article  CAS  PubMed  Google Scholar 

  21. J. Garcia-Amoros, M. Diaz-Lobo, S. Nonell, and D. Velasco, Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions, Angew. Chem., Int. Ed., 2012, 51, 12820–12823.

    Article  CAS  Google Scholar 

  22. J. Garcia-Amoros, S. Nonell, and D. Velasco, Light-controlled real time information transmitting systems based on nanosecond thermally-isomerising amino-azopyridinium salts, Chem. Commun., 2012, 48, 3421–3423.

    Article  CAS  Google Scholar 

  23. H. A. Lester, M. M. Nass, M. E. Krouse, J. M. Nerbonne, N. H. Wassermann, and B. F. Erlanger, Electrophysiological Experiments With Photoisomerizable Cholinergic Compounds: Review and Progress Report, Ann. N. Y. Acad. Sci., 1980, 346, 475–490.

    Article  CAS  PubMed  Google Scholar 

  24. R. Siewertsen, H. Neumann, B. Buchheim-Stehn, R. Herges, C. Nather, F. Renth, and F. Temps, Highly efficient reversible Z-E photoisomerization of a bridged azobenzene with visible light through resolved S(1)(n pi*) absorption bands, J. Am. Chem. Soc., 2009, 131, 15594–15595.

    Article  CAS  PubMed  Google Scholar 

  25. C. Knie, M. Utecht, F. Zhao, H. Kulla, S. Kovalenko, A. M. Brouwer, P. Saalfrank, S. Hecht, and D. Bleger, ortho-Fluoroazobenzenes: visible light switches with very long-Lived Z isomers, Chemistry., 2014, 20, 16492–16501.

    Article  CAS  PubMed  Google Scholar 

  26. D. Bleger, J. Schwarz, A. M. Brouwer, and S. Hecht, o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light, J. Am. Chem. Soc., 2012, 134, 20597–20600.

    Article  CAS  PubMed  Google Scholar 

  27. T. Fukaminato, T. Hirose, T. Doi, M. Hazama, K. Matsuda, and M. Irie, Molecular design strategy toward diarylethenes that photoswitch with visible light, J. Am. Chem. Soc., 2014, 136, 17145–17154.

    Article  CAS  PubMed  Google Scholar 

  28. S. Samanta, A. A. Beharry, O. Sadovski, T. M. McCormick, A. Babalhavaeji, V. Tropepe, and G. A. Woolley, Photoswitching azo compounds in vivo with red light, J. Am. Chem. Soc., 2013, 135, 9777–9784.

    Article  CAS  PubMed  Google Scholar 

  29. S. Samanta, C. Qin, A. J. Lough, and G. A. Woolley, Bidirectional photocontrol of peptide conformation with a bridged azobenzene derivative, Angew. Chem., Int. Ed., 2012, 51, 6452–6455.

    Article  CAS  Google Scholar 

  30. L. A. Tatum, X. Su, and I. Aprahamian, Simple Hydrazone Building Blocks for Complicated Functional Materials, Acc. Chem. Res., 2014, 47, 2141–2149.

    Article  CAS  PubMed  Google Scholar 

  31. X. Su, and I. Aprahamian, Hydrazone-based switches, metallo-assemblies and sensors, Chem. Soc. Rev., 2014, 43, 1963–1981.

    Article  CAS  PubMed  Google Scholar 

  32. D. J. van Dijken, P. Kovaříček, S. P. Ihrig, and S. Hecht, Acylhydrazones as Widely Tunable Photoswitches, J. Am. Chem. Soc., 2015, 137, 14982–14991.

    Article  PubMed  CAS  Google Scholar 

  33. A. T. Franks, D. Peng, W. Yang, and K. J. Franz, Characterization of a Photoswitching Chelator with Light-Modulated Geometric, Electronic, and Metal-Binding Properties, Inorg. Chem., 2014, 53, 1397–1405.

    Article  CAS  PubMed  Google Scholar 

  34. A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  35. C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B: Condens. Matter., 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  36. M. N. Chaur, D. Collado, and J. M. Lehn, Configurational and constitutional information storage: multiple dynamics in systems based on pyridyl and acyl hydrazones, Chemistry., 2011, 17, 248–258.

    Article  CAS  PubMed  Google Scholar 

  37. G. Condorelli, L. L. Costanzo, L. Alicata, and A. Giuffrida, The Photochemical Isomerization of the Pyridine-2-Aldehyde 4-Nitrophenylhydrazone, Chem. Lett., 1975, 4, 227–230.

    Article  Google Scholar 

  38. L. L. Costanzo, U. Chiacchio, S. Giuffrida, and G. Condorelli, Mechanism of direct photoisomerization of pyridylhydrazones, J. Photochem., 1980, 13, 83–87.

    Article  CAS  Google Scholar 

  39. L. L. Costanzo, S. Giuffrida, U. Chiacchio, and G. Condorelli, Direct and sensitized syn—anti photoisomerization of benzoylpyridine-4-nitrophenylhydrazones, J. Photochem., 1979, 11, 39–47.

    Article  CAS  Google Scholar 

  40. K. Hruskova, P. Kovarikova, P. Bendova, P. Haskova, E. Mackova, J. Stariat, A. Vavrova, K. Vavrova, and T. Simunek, Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis, Chem. Res. Toxicol., 2011, 24, 290–302.

    Article  CAS  PubMed  Google Scholar 

  41. X. Su, and I. Aprahamian, Switching around two axles: controlling the configuration and conformation of a hydrazone-based switch, Org. Lett., 2011, 13, 30–33.

    Article  CAS  PubMed  Google Scholar 

  42. P. Kovarikova, K. Vavrova, K. Tomalova, M. Schongut, K. Hruskova, P. Haskova, and J. Klimes, HPLC-DAD and MS/MS analysis of novel drug candidates from the group of aromatic hydrazones revealing the presence of geometric isomers, J. Pharm. Biomed. Anal., 2008, 48, 295–302.

    Article  CAS  PubMed  Google Scholar 

  43. P. Kovarikova, Z. Mrkvickova, and J. Klimes, Investigation of the stability of aromatic hydrazones in plasma and related biological material, J. Pharm. Biomed. Anal., 2008, 47, 360–370.

    Article  CAS  PubMed  Google Scholar 

  44. K. Gollnick, and H. U. Stracke, Direct and sensitized photolysis of dimethyl sulphoxide in solution, Pure Appl. Chem., 1973, 33, 217–245.

    Article  CAS  Google Scholar 

  45. L. K. Charkoudian, D. M. Pham, A. M. Kwon, A. D. Vangeloff, and K. J. Franz, Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress, Dalton Trans., 2007, 5031–5042.

    Google Scholar 

  46. F. Thomas, G. Serratrice, C. Béguin, E. S. Aman, J. L. Pierre, M. Fontecave, and J. P. Laulhère, Calcein as a Fluorescent Probe for Ferric Iron, J. Biol. Chem., 1999, 274, 13375–13383.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation for supporting aspects of this work (CHE-1152054). K. C. H appreciates the US Department of Education GAANN Fellowship (P200A150114). A. T. F. appreciates a Burroughs Wellcome Fellowship from the Department of Chemistry, Duke University. R. C. M. appreciates NSF-REU funding for summer research at Duke (NSF-CHE-1062607). M. S. W. appreciates summer research funding from Department of Chemistry, Duke University. We thank Dr George Dubay and Chris Jernigan for assistance with LC-MS data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine J. Franz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, K.C., Franks, A.T., McAtee, R.C. et al. Metal-binding hydrazone photoswitches for visible light reactivity and variable relaxation kinetics. Photochem Photobiol Sci 16, 1604–1612 (2017). https://doi.org/10.1039/c7pp00173h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00173h

Navigation