Issue 71, 2016, Issue in Progress

O-Acrylamidomethyl-2-hydroxypropyltrimethyl ammonium chloride chitosan and silk modified mesoporous bioactive glass scaffolds with excellent mechanical properties, bioactivity and long-lasting antibacterial activity

Abstract

Mesoporous bioactive glass (MBG) is a promising scaffold in bone tissue engineering because its large specific surface area facilitates bioactive behavior and allows mesopores to be loaded with osteogenic agents for promoting the formation of new bone. In the present study, a biocompatible MBG-based scaffold for bone regeneration applications with long-lasting antibacterial activity were fabricated via surface modification with O-acrylamidomethyl-2-hydroxypropyltrimethyl ammonium chloride chitosan (NMA-HACC) and silk. The NMA-HACC–silk (NHS) modified MBG scaffolds were prepared by evaporation-induced self-assembly using polyurethane sponges and the P123 surfactant as co-templates. The microstructure of the scaffold was characterized using scanning electron microscopy (SEM) and synchrotron radiation microcomputer tomography (SRμCT). Fourier transform infrared spectroscopy (FTIR), SEM, X-ray diffraction (XRD), and mechanical experiments were used to analyze the product's composition, inner microstructure, morphology, and mechanical strength before and after its surface modification. These methods were also used to assess the degree to which minerals became deposited on the scaffold after soaking in simulated body fluid (SBF). Confocal laser scanning microscopy (CLSM) was used to evaluate the antibacterial properties and biocompatibility of the scaffolds at various time intervals. Finally, biocompatibility was demonstrated by studying the in vitro proliferation and viability of human mesenchymal stem cells (hMSCs). The results showed that the fabricated scaffolds possessed well-ordered, three-dimensional structures and the NMA-HACC–silk modification rendered the pore network more uniform and continuous, leading to the significant improvement in bioactivity and in hMSC attachment, cell spreading and cell proliferation. Furthermore, the NMA-HACC–silk modification significantly prolonged the antibacterial activity of the MBG scaffold.

Graphical abstract: O-Acrylamidomethyl-2-hydroxypropyltrimethyl ammonium chloride chitosan and silk modified mesoporous bioactive glass scaffolds with excellent mechanical properties, bioactivity and long-lasting antibacterial activity

Article information

Article type
Paper
Submitted
03 May 2016
Accepted
24 Jun 2016
First published
29 Jun 2016

RSC Adv., 2016,6, 66938-66948

O-Acrylamidomethyl-2-hydroxypropyltrimethyl ammonium chloride chitosan and silk modified mesoporous bioactive glass scaffolds with excellent mechanical properties, bioactivity and long-lasting antibacterial activity

P. Zhou, Y. Xia, L. Jiang, Y. Zhang, C. Qiu, Y. Xie and S. Xu, RSC Adv., 2016, 6, 66938 DOI: 10.1039/C6RA11463F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements