Skip to main content
Log in

Relay proton transfer triggered twisted intramolecular charge transfer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The mechanism for the dual emission of 2-(4’-N,N-dimethylaminophenyl)imidazo[4,5-c]pyridine (DMAPIP-c) in protic solvents was investigated by synthesizing and studying its analogues. Theoretical calculations were carried out to corroborate the experimental findings. The deprotonation studies suggest that the enhancement in the TICT emission of anionic forms of DMAPIP-c is limited to a protic environment. The spectral characteristics of DMAPIP-c were also studied in a methanol–acetonitrile binary solvent mixture. Unlike DMAPIP-c, the methyl derivatives do not emit dual fluorescence in protic solvents. The relative intensity of the TICT emission (with respect to that of normal emission) rises with the methanol amount in the acetonitrile—methanol binary solvent mixture. The studies also show that a 1 : 3 hydrogen bonded complex is formed between DMAPIP-c and methanol and it is responsible for the TICT emission. Based on the results a relay proton transfer tiggered TICT emission is proposed. TDDFT calculations were performed to predict the emission energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Rettig, Electron Transfer I, Topics in current chemistry, Springer-Verlag, Berlin, 1994, vol. 169, pp 253–299.>

    Article  CAS  Google Scholar 

  2. G. Campi, G. Ciasca, N. Poccia, A. Ricci, M. Fratini and A. Bianconi, Controlling photoinduced electron transfer via eefects self-organization for novel functional macromolecular systems, Curr. Protein Pept. Sci., 2014, 15, 394–399.

    Article  CAS  PubMed  Google Scholar 

  3. T. Debnath, P. Maity, H. Lobo, B. Singh, G. S. Shankarling and H. N. Ghosh, Extensive reduction in back electron transfer in twisted intramolecular charge-transfer (TICT) coumarin-dye-sensitized TiO2 nanoparticles/film: A femtosecond transient absorption study, Chem.–Eur. J., 2014, 20, 3510–3519.

    Article  CAS  PubMed  Google Scholar 

  4. Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Structural changes accompanying intramolecular electron transfer: Focus on twisted intramolecular charge transfer states and structures, Chem. Rev., 2003, 103, 3899–4031.

    Article  PubMed  Google Scholar 

  5. W. Rettig, Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the tevelopment of new laser dyes and the primary process of vision and photosynthesis, Angew. Chem., Int. Ed. Engl., 1986, 25, 971–988.

    Article  Google Scholar 

  6. D. J. Stewart, M. J. Dalton, R. N. Swiger, J. L. Fore, M. A. Walker, T. M. Cooper, J. E. Haley, L.-S. Tan, Symmetry- and solvent-dependent photophysics of fluorenes containing donor and acceptor groups, J. Phys. Chem. A, 2014, 118, 5228–5237.

    Article  CAS  PubMed  Google Scholar 

  7. J. Catalan, On the dual emission of p-dimethylaminobenzonitrile and its photophysical implications, Phys. Chem. Chem. Phys., 2013, 15, 8811–8820.

    Article  CAS  PubMed  Google Scholar 

  8. F. Zhou, J. Shao, Y. Yang, J. Zhao, H. Guo, X. Li, S. Ji and Z. Zhang, Molecular rotors as fluorescent viscosity sensors: Molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states, Eur. J. Org. Chem., 2011, 4773–4787.

    Google Scholar 

  9. N. Hobeika, J.-P. Malval, H. Chaumeil, V. Roucoules, F. Morlet-Savary, D. Le Nouen and F. Gritti, Abnormal enhancement of the photoisomerization process in a trans-nitroalkoxystilbene dimers in beta-cyclodextrin cavities, J. Phys. Chem. A, 2012, 116, 10328–10337.

    Article  CAS  PubMed  Google Scholar 

  10. F. S. Santos, R. R. Descalzo, P. F. B. Goncalves, E. V. Benvenutti and F. S. Rodembusch, Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes, Phys. Chem. Chem. Phys., 2012, 14, 10994–11001.

    Article  CAS  Google Scholar 

  11. K. S. Ramini, B. Anderson, S.-T. Hung and M. G. Kuzyk, Experimental tests of a new correlated chromophore domain model of self-healing in a dye-doped polymer, Polym. Chem., 2013, 4, 4948–4954.

    Article  CAS  Google Scholar 

  12. H. Kumar, A. Chattopadhyay, R. Prasath, V. Devaraji, R. Joshi, P. Bhavana, P. Saini and S. K. Ghosh, Physicochemical Studies, solvation, and DNA damage of quinoline-appended chalcone derivative: Comprehensive spectroscopic approach toward drug discovery, J. Phys. Chem. B, 2014, 118, 7257–7266.

    Article  CAS  PubMed  Google Scholar 

  13. F. A. S. Chipem, A. Mishra and G. Krishnamoorthy, The role of hydrogen bonding in excited state intramolecular charge transfer, Phys. Chem. Chem. Phys., 2012, 14, 8775–8790.

    Article  CAS  PubMed  Google Scholar 

  14. M. Cigan, J. Donovalova, V. Szoecs, J. Gaspar, K. Jakusova and A. Gaplovsky, 7-(Dimethylamino) Coumarin-3-Carbaldehyde and its Phenylsemicarbazone: TICT excited state modulation, fluorescent H-aggregates, and preferential solvation, J. Phys. Chem. A, 2013, 117, 4870–4883.

    Article  CAS  PubMed  Google Scholar 

  15. C. Cazeau-Dubroca, S. Ait Lyazidi, P. Cambou, A. Peirigua, Ph. Cazeau and M. Pesquer, Twisted internal charge-transfer molecules- already twisted in the ground State, J. Phys. Chem., 1989, 93, 2347–2358.

    Article  CAS  Google Scholar 

  16. K. A. Al-Hassan and T. Azumi, The role of free-volume in the twisted intramolecular charge-transfer (TICT) emission of dimethylaminobenzonitrile and related-compounds in rigid polymer matrices., Chem. Phys. Lett., 1988, 146, 121–124.

    Article  CAS  Google Scholar 

  17. T. Kobayashi, M. Futakami and O. Kajimoto, 4-(N,N-Dimethylamino)benzonitrile solvented by apolar molecule–structural demand for charge-transfer state formation, Chem. Phys. Lett., 1986, 130, 63–66.

    Article  CAS  Google Scholar 

  18. M. Zakharov, O. Krauss, Y. Nosenko, B. B. Brutschy and A. Dreuw, Specific microsolvation triggers dissociation-mediated anomalous red-shifted fluorescence in the gas phase, J. Am. Chem. Soc., 2009, 131, 461–469.

    Article  CAS  PubMed  Google Scholar 

  19. A. Demeter, V. Mile, T. Bérces, Hydrogen bond formation between 4-(Dimethylamino)pyridine and aliphatic alcohols, J. Phys. Chem. A, 2007, 111, 8942–8949.

    Article  CAS  PubMed  Google Scholar 

  20. J. Herbich and J. Waluk, Excited charge transfer states in 4-Aminopyrimidines, 4- (dimethylanilino)pyrimidine and 4-(Dimethylamino)pyridine, Chem. Phys., 1994, 188, 247–265.

    Article  CAS  Google Scholar 

  21. N. Cox, D. A. Pantazis, F. Neese and W. Lubitz, Biological water oxidation, Acc. Chem. Res., 2013, 46, 1588–1596.

    Article  CAS  PubMed  Google Scholar 

  22. A. Migliore, N. F. Polizzi, M. J. Therie and D. Beratan, Biochemistry and theory of proton-coupled electron tdransfer, Chem. Rev., 2014, 114, 3381–3465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. P. Layfield and S. Hammes-Schiffer, Hydrogen tunnelling in enzymes and biomimetic models, Chem. Rev., 2014, 114, 3466–3494.

    Article  CAS  PubMed  Google Scholar 

  24. A. P. Demchenko, K.-C. Tang, P.-T. Chou, Excited-state proton coupled charge transfer modulated by molecular structure and media polarization, Chem. Soc. Rev., 2013, 42, 1379–1408.

    Article  CAS  PubMed  Google Scholar 

  25. G. Krishnamoorthy and S. K. Dogra, Dual fluorescence of 2-(4’-NN-Dimethylaminophenyl)pyrido[3,4-d]imidazole: effect of solvents, Spectrochim. Acta, Part A, 1999, 55, 2647–2658.

    Article  Google Scholar 

  26. E. Fasani, A. Albini, P. Savarino, G. Viscardi and E. Barni, Hydrogen bonding, protonation and twisting in the singlet excited state of some 2-(4-Aminophenyl)pyrido-oxa-, -thia-, and–imidazoles, J. Heterocycl. Chem., 1993, 30, 1041–1044.

    Article  CAS  Google Scholar 

  27. N. Dash, F. A. S. Chipem, R. Swaminathan and G. Krishnamoorthy, Hydrogen bond induced twisted intramolecular charge transfer in 2-(4-N,N-Dimethylaminophenyl)imidazo[4,5-b]pyridine, Chem. Phys. Lett., 2008, 460, 119–124.

    Article  CAS  Google Scholar 

  28. V. Bavetsias, C. Sun, N. Bouloc, J. Reynisson, P. Workman, S. Linardopoulos and M. Edward, Hit Generation and exploration: Imidazo[4,5-b]pyridine derivatives as inhibitors of aurora kinases, Bioorg. Med. Chem. Lett., 2007, 17, 6567–6571.

    Article  CAS  PubMed  Google Scholar 

  29. H. Yu, H. Kawanishi and H. Koshima, Preparation and photophysical properties of benzimidazole-based gels, J. Photochem. Photobiol., A, 2006, 178, 62–69.

    Article  CAS  Google Scholar 

  30. F. Wu, C. M. Chamchoumis and R. P. Thummel, Bidentate ligands that contain pyrrole in place of pyridine, Inorg. Chem., 2000, 39, 584–590.

    Article  CAS  PubMed  Google Scholar 

  31. Y.-P. Tong, S.-L. Zheng, X.-M. Chen, Syntheses, structures, photoluminescence and theoretical studies of two dimeric Zn(II) Compounds with aromatic N,O-chelate phenolic ligands, J. Mol. Struct., 2007, 826, 104–112.

    Article  CAS  Google Scholar 

  32. E. Lippert, Spektroskopische bestimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzustand, Z. Elektrochem., 1957, 61, 962–975.

    CAS  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, St R. E. Ratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  34. S. Miertuš, E. Scrocco and J. Tomasi, Static interaction of a solute with a continuum - A direct utilization of abinitio molecular potentials for the prevision of solvent effects, Chem. Phys., 1981, 55, 117–129.

    Article  Google Scholar 

  35. E. Cancès, B. Mennucci and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, J. Chem. Phys., 1997, 107, 3032–3041.

    Article  Google Scholar 

  36. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a Systematic Molecular Orbital Theory for Excited States, J. Phys. Chem., 1992, 96, 135–149.

    Article  CAS  Google Scholar 

  37. M. E. Casida, Time-dependent density-functional response theory for molecules, in Recent advances in density functional methods, Part I, World Scientific, Singapore, 1995, p. 155.>

    Book  Google Scholar 

  38. E. Gross, J. Dobson and M. Petersilka, Density functional theory of time-dependent phenomena, Top. Curr. Chem., 1996, 181, 81–172.

    Article  CAS  Google Scholar 

  39. F. A. S. Chipem and G. Krishnamoorthy, Comparative theoretical study of rotamerism and excited state intramolecular proton transfer of 2-(2’-Hydroxyphenyl)benzimidazole, 2-(2’-Hydroxyphenyl)imidazo[4,5-b]pyridine, 2-(2’-Hydroxyphenyl)imidazo[4,5-c] pyridine and 8-(2’-Hydroxyphenyl)purine, J. Phys. Chem. A, 2009, 113, 12063–12070.

    Article  CAS  PubMed  Google Scholar 

  40. F. A. S. Chipem, N. Dash and G. Krishnamoorthy, Role of nitrogen substitution in phenyl ring on excited state intramolecular proton transfer and rotamerism of 2-(2-Hydroxyphenyl) benzimidazole: A theoretical study, J. Chem. Phys., 2011, 134, 104308.

    Article  PubMed  CAS  Google Scholar 

  41. A. D. Becke, Density-functional thermochemistry. 3. The role of exact Exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  42. C. Lee, W. Yang and R. G. Parr, Development of the colle-cavetti correlation-energy formula into a functional of the electron-eensity, Phys. Rev. B: Condens. Matter, 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  43. T. Yanai, D. P. Tew and N. C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 2004, 393, 51–57.

    Article  CAS  Google Scholar 

  44. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 2010, 132, 154104–154118.

    Article  PubMed  CAS  Google Scholar 

  45. J. E. Kwon and S. Y. Park, Advanced organic optoelectronic materials: Harnessing excited-state intramolecular proton transfer (ESIPT) process, Adv. Mater., 2011, 23, 3615–3642.

    Article  CAS  PubMed  Google Scholar 

  46. J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years, Chem. Soc. Rev., 2011, 40, 3483–3495.

    Article  CAS  PubMed  Google Scholar 

  47. A. El Nahhas, T. Pascher, L. Leone, L. Panzella, A. Napolitano and V. Sundstrom, Photochemistry of pheomelanin building blocks and model chromophores: Excited-state intra- and intermolecular proton transfer, J. Phys. Chem. Lett., 2014, 5, 2094–2100.

    Article  PubMed  CAS  Google Scholar 

  48. N. Alarcos, J. Angel Organero, F. Sanchez and A. Douhal, Exploring the photobehavior of nanocaged monomers and H- and J-aggregates of a proton-transfer dye within NaX and NaY zeolites, J. Phys. Chem. C, 2014, 118, 8217–8226.

    Article  CAS  Google Scholar 

  49. X.-F. Yang, Q. Huang, Y. Zhong, Z. Li, H. Li, M. Lowry, J. O. Escobedo and R. M. Strongin, A dual emission fluorescent probe enables simultaneous detection of glutathione and cysteine/homocysteine, Chem. Sci., 2014, 5, 2177–2183.

    Article  CAS  PubMed  Google Scholar 

  50. G. Krishnamoorthy and S. K. Dogra, Twisted intramolecular charge transfer of 2-(4’-N,N-dimethylaminophenyl)pyrido[3,4-d]imidazole in cyclodextrins: Effect of pH, J. Phys. Chem. A, 2000, 104, 2542–2551.

    Article  CAS  Google Scholar 

  51. G. Krishnamoorthy and S. K. Dogra, Effect of micelles on dual fluorescence of 2-(4’-N,N-dimethylaminophenyl) pyrido[3,4-d]imidazole, Chem. Phys. Lett., 2000, 323, 234–242.

    Article  CAS  Google Scholar 

  52. S. Jana, S. Dalapati and N. Guchhait, Proton Transfer assisted charge transfer phenomena in photochromic schiff bases and effect of -NEt2 groups to the anil schiff bases, J. Phys. Chem. A, 2012, 116, 10948–10958.

    Article  CAS  PubMed  Google Scholar 

  53. Y. Kim, M. Yoon and D. Kim, Excited-state intramolecular proton transfer coupled-charge transfer of p-N,N-Dimethylaminosalicylic acid in aqueous Beta-cyclodextrin solutions, J. Photochem. Photobiol., A, 2001, 138, 167–175.

    Article  CAS  Google Scholar 

  54. A. Mishra, S. Sahu, N. Dash, S. K. Behera and G. Krishnamoorthy, Double proton transfer induced twisted intramolecular charge transfer emission in 2-(4’-N,N-dimethylaminophenyl)imidazo[4,5-b]pyridine, J. Phys. Chem. B, 2013, 117, 9469–9477.

    Article  CAS  PubMed  Google Scholar 

  55. V. Vetokhina, J. Nowacki, M. Pietrzak, M. F. Rode, A. L. Sobolewski, J. Waluk and J. Herbich, 7-Hydroxyquinoline-8-carbaldehydes. 2. Prototropic Equilibria, J. Phys. Chem. A, 2013, 117, 9147–9155.

    Article  CAS  PubMed  Google Scholar 

  56. G. Krishnamoorthy and S. K. Dogra, Spectral characteristics of the various prototropic species of 2-(4’-N,N-Dimethylaminophenyl)pyrido[3,4-d]imidazole, J. Org. Chem., 1999, 64, 6566–6574.

    Article  CAS  PubMed  Google Scholar 

  57. R. Pomès, Proton Relay in Membrane Proteins in ‘Molecular Bioenergetics, Simulations of Electron, Proton, and Energy Transfer’, American Chemical Society, 2004, pp. 159–173.>

    Google Scholar 

  58. M. Itoh, T. Adachi and K. Tokumura, Transient absorption and 2-step Laser excitation fluorescence- spectra of the excited-state and ground-state proton-transfer in 7-hydroxyquinoline, J. Am. Chem. Soc., 1983, 105, 4828–4829.

    Article  CAS  Google Scholar 

  59. R. Schipfer, O. S. Wolfbeis and A. Knierzinger, PH- Dependent fluorescence spectroscopy. 12. flavone, 7-hydroxyflavone, and 7-methoxyflavone, J. Chem. Soc., Perkin Trans. 2, 1981, 1443–1448.

    Google Scholar 

  60. H. A. Benesi and J. H. Hildebrand, A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703–2707.

    Article  CAS  Google Scholar 

  61. K. Kim, J.-I. Hoe, DFT conformational study of calix [6]arene: Hydrogen bond, Bull. Korean Chem. Soc., 2009, 30, 837–845.

    Article  Google Scholar 

  62. G. Krishnamoorhy, Hydrogen Bonding and Transfer in the Excited State, John Wiley & Sons Ltd, 2011, vol. 1, pp. 313–327.>

    Google Scholar 

  63. Y. Kim and M. Yoon, Intramolecular hydrogen bonding effect on the excited-state intramolecular charge transfer of p-aminosalicylic acid, Bull. Korean Chem. Soc., 1998, 19, 980–985.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishnamoorthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S.K., Krishnamoorthy, G. Relay proton transfer triggered twisted intramolecular charge transfer. Photochem Photobiol Sci 14, 2225–2237 (2015). https://doi.org/10.1039/c5pp00339c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00339c

Navigation