Skip to main content
Log in

Modulated photophysics of an anthracene-based fluorophore within bile-salt aggregates: the effect of the ionic strength of the medium on the aggregation behavior

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this article, the binding interactions of a promising chloride channel blocker 9-methyl anthroate (9-MA) with a series of bile-salt aggregates of varying hydrophobicity have been thoroughly demonstrated. The altered photophysical properties of the fluorescent probe within the concerned microheterogeneous environments have been exploited spectroscopically to assess the communication between the aggregates and the guest. The contrived hydrophobic environment provided by the aggregates appreciably diminishes the water-assisted non-radiative decay channels and thus extends the fluorescence lifetime and the rotational relaxation time of the probe. NaDC aggregates, being more rigid and hydrophobic, provide a better protection to the bound guest from the external influence which is apparent from a much longer fluorescence lifetime and rotational correlation time for the encapsulated probe in NaDC aggregates compared to those in NaC and NaTC aggregates, as is further validated by fluorescence quenching experiments. Salt induced alterations of the binding behavior of the probe with the bile-salt aggregates have also been evaluated via fluorimetric studies, which conclude larger and tighter aggregate formation resulting in a superior degree of rigidity imposed on the aggregate-bound probe at high ionic strength of the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. O’Connor and R. G. Wallace, Physico-Chemical Behavior of Bile-salts, Adv. Colloid Interface Sci., 1985, 22, 1–111.

    Article  Google Scholar 

  2. C. Bohne, Dynamics of Probe Interaction with Bile-salt Aggregates, in Organized Assemblies in Chemical Analysis: Bile Acid/Salt Surfactant Systems, ed. W. L. Hinze, JAI Press Inc., Stanford, 2000, pp. 147–166.>

    Google Scholar 

  3. J. P. Kratohvil, Size of bile-salt micelles: techniques, problems and results, Adv. Colloid Interface Sci., 1986, 26, 131–154.

    Article  CAS  Google Scholar 

  4. A. F. Hofmann and K. J. Mysels, Bile salts as biological surfactants, Colloids Surf., 1987, 30, 145–173.

    Article  Google Scholar 

  5. N. A. Mazer, M. C. Carey, R. F. Kwasnick and G. B. Benedek, Quasielastic Light Scattering Studies of Aqueous Biliary Lipid Systems: Size, Shape, and Thermodynamics of Bile-salt Micelles, Biochemistry, 1979, 18, 3064–3075.

    Article  CAS  Google Scholar 

  6. D. M. Small, S. A. Penkett and D. Chapman, Studies on Simple and Mixed Bile-salt Micelles by Nuclear Magnetic Resonance Spectroscopy, Biochim. Biophys. Acta, Lipids Lipid Metab., 1969, 176, 178–189.

    Article  CAS  Google Scholar 

  7. D. M. Small, in The Bile-salts, ed. P. P. Nair and D. Kritchevsky, Plenum Press, New York, 1971, pp. 249–256.>

  8. H. Kawamura, Y. Murata, T. Yamaguchi, H. Igimi, M. Tanaka, G. Sugihara and J. P. Kratohvil, Spin-Label Studies of Bile-salt Micelles, J. Phys. Chem., 1989, 93, 3321–3326.

    Article  CAS  Google Scholar 

  9. E. Bottari, A. A. D’Archivio, M. R. Festa, L. Galantini and E. Giglio, Structure and Composition of Sodium Taurocholate Micellar Aggregates, Langmuir, 1999, 15, 2996–2998.

    Article  CAS  Google Scholar 

  10. K. Matsuoka and Y. Moroi, Micelle Formation of Sodium Deoxycholate and Sodium Ursodeoxycholate (Part 1), Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2002, 1580, 189–199.

    Article  CAS  Google Scholar 

  11. S. M. Meyerhoffer and L. B. McGown, Microenvironments of Fluorescence Probes in Sodium Taurocholate and Sodium Taurodeoxycholate Bile-salt Media, Anal. Chem., 1991, 63, 2082–2086.

    Article  CAS  Google Scholar 

  12. O. Rinco, M. C. Nolet, R. Ovans and C. Bohne, Probing the Binding Dynamics to Sodium Cholate Aggregates using Naphthalene Derivatives as Guests, Photochem. Photobiol. Sci., 2003, 2, 1140–1151.

    Article  CAS  Google Scholar 

  13. O. L. Waissbluth, M. C. Morales and C. Bohne, Influence of Planarity and Size on Guest Binding with Sodium Cholate Aggregates, Photochem. Photobiol., 2006, 82, 1030–1038.

    Article  CAS  Google Scholar 

  14. R. Li, E. Carpentier, E. D. Newell, L. M. Olague, E. Heafey, C. Yihwa and C. Bohne, Effect of the Structure of Bile Salt Aggregates on the Binding of Aromatic Guests and the Accessibility of Anions, Langmuir, 2009, 25, 13800–13808.

    Article  CAS  Google Scholar 

  15. M. Gomez-Mendoza, E. Nuin, I. Andreu, M. L. Marin and M. A. Miranda, Photophysical Probes to Assess the Potential of Cholic Acid Aggregates as Drug Carriers, J. Phys. Chem. B, 2012, 116, 10213–10218.

    Article  CAS  Google Scholar 

  16. J. Rohacova, M. L. Marin, A. Martinez-Romero, L. Diaz, J. E. O’Connor, M. J. Gomez-Lechon, M. T. Donato, J. V. Castell and M. A. Miranda, Fluorescent Benzofurazan-Cholic Acid Conjugates for in Vitro Assessment of Bile Acid Uptake and Its Modulation by Drugs, ChemMedChem, 2009, 4, 466–472.

    Article  CAS  Google Scholar 

  17. D. Fuentealba, K. Thurber, E. Bovero, T. C. S. Pace and C. Bohne, Effect of sodium chloride on the binding of polyaromatic hydrocarbon guests with sodium cholate aggregates, Photochem. Photobiol. Sci., 2011, 10, 1420–1430.

    Article  CAS  Google Scholar 

  18. S. Mandal, S. Ghosh, D. Banik, C. Banerjee, J. Kuchlyan and N. Sarkar, An Investigation into the Effect of the Structure of Bile-salt Aggregates on the Binding Interactions and ESIHT Dynamics of Curcumin: A Photophysical Approach To Probe Bile-salt Aggregates as a Potential Drug Carrier, J. Phys. Chem. B, 2013, 117, 13795–13807.

    Article  CAS  Google Scholar 

  19. T. Mondal, S. Ghosh, A. K. Das, A. K. Mandal and K. Bhattacharyya, Salt Effect on the Ultrafast Proton Transfer in Niosome, J. Phys. Chem. B, 2012, 116, 8105–8112.

    Article  CAS  Google Scholar 

  20. D. Sarkar, D. Ghosh, P. Das and N. Chattopadhyay, Electrostatic Pushing Effect: A Prospective Strategy for Enhanced Drug Delivery, J. Phys. Chem. B, 2010, 114, 12541–12548.

    Article  CAS  Google Scholar 

  21. M. J. Davila, S. Aparicio, R. Alcalde, B. García and J. M. Leal, On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid, Green Chem., 2007, 9, 221–232.

    Article  CAS  Google Scholar 

  22. P. Garidel, A. Hildebrand, R. Neubert and A. Blume, Thermodynamic Characterization of Bile-salt Aggregation as a Function of Temperature and Ionic Strength Using Isothermal Titration Calorimetry, Langmuir, 2000, 16, 5267–5275.

    Article  Google Scholar 

  23. L. Hao, R. Lu, D. G. Leaist and P. R. Poulin, Aggregation Number of Aqueous Sodium Cholate Micelles from Mutual Diffusion Measurements, J. Solution Chem., 1997, 26, 113–125.

    Article  CAS  Google Scholar 

  24. S. M. Meyerhoffer and L. B. McGown, Fluorescent Probe Studies of Metal Salt Effects on Bile-salt Aggregation, J. Am. Chem. Soc., 1991, 113, 2146–2149.

    Article  CAS  Google Scholar 

  25. A. Ganguly, S. Jana, S. Ghosh, S. Dalapati and N. Guchhait, Solvent modulated photophysics of 9-methyl anthroate: Exploring the effect of polarity and hydrogen bonding on the emissive state, Spectrochim. Acta, Part A, 2013, 112, 237–244.

    Article  CAS  Google Scholar 

  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York, 1999.

    Book  Google Scholar 

  27. C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev., 1994, 94, 2319–2358.

    Article  CAS  Google Scholar 

  28. R. L. Scott, Some comments on the Benesi–Hildebrand equation, Recl. Trav. Chim. Pays-Bas, 1956, 75, 787–789.

    Article  CAS  Google Scholar 

  29. N. Ghosh, R. Mondal and S. Mukherjee, Hydrophobicity Is the Governing Factor in the Interaction of Human Serum Albumin with Bile-salts, Langmuir, 2015, 31, 1095–1104.

    Article  CAS  Google Scholar 

  30. A. Ganguly, B. K. Paul, S. Ghosh, S. Dalapati and N. Guchhait, Interaction of a potential chloride channel blocker with a model transport protein: A spectroscopic and molecular docking investigation, Phys. Chem. Chem. Phys., 2014, 16, 8465–8475.

    Article  CAS  Google Scholar 

  31. B. K. Paul, N. Ghosh and S. Mukherjee, Prototropic Transformation and Rotational-Relaxation Dynamics of a Biological Photosensitizer Norharmane inside Nonionic Micellar Aggregates, J. Phys. Chem. B, 2014, 118, 11209–11219.

    Article  CAS  Google Scholar 

  32. A. Ganguly, S. Ghosh and N. Guchhait, Interaction of triblock co-polymer micelles with phospholipid-bilayer: A spectroscopic investigation using a potential chloride channel blocker, Phys. Chem. Chem. Phys., 2015, 17, 6597–6605.

    Article  CAS  Google Scholar 

  33. G. Li and L. B. McGown, A New Approach to Polydispersity Studies of Sodium Taurocholate and Sodium Taurodeoxycholate Aggregates Using Dynamic Fluorescence Anisotropy, J. Phys. Chem., 1993, 97, 6745–6752, and references therein.

    Article  CAS  Google Scholar 

  34. Z. Shi, P. G. Debenedetti and F. H. Stillinger, Relaxation processes in liquids: Variations on a theme by Stokes and Einstein, J. Chem. Phys., 2013, 138, 12A526.

    Article  Google Scholar 

  35. G. Esposito, E. Giglio, N. V. Pavel and A. Zanobit, Size and Shape of Sodium Deoxycholate Mlcellar Aggregates, J. Phys. Chem., 1987, 91, 356–362.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aniruddha Ganguly or Nikhil Guchhait.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguly, A., Ghosh, S. & Guchhait, N. Modulated photophysics of an anthracene-based fluorophore within bile-salt aggregates: the effect of the ionic strength of the medium on the aggregation behavior. Photochem Photobiol Sci 14, 2168–2178 (2015). https://doi.org/10.1039/c5pp00280j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00280j

Navigation