Skip to main content
Log in

A critical approach toward resonance-assistance in the intramolecular hydrogen bond interaction of 3,5-diiodosalicylic acid: a spectroscopic and computational investigation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysics of a prospective drug molecule, 3,5-diiodosalicylic acid (3,5-DISA), having a wide spectrum of biological and medicinal applications, have been investigated using spectroscopic techniques and computational analyses. The remarkably large Stokes’ shifts in various solvents from 3,5-DISA has been intertwined with the occurrence of an excited-state intramolecular proton transfer (ESIPT) reaction. Concurrently, the emergence of an intriguing dual emission feature in less interacting solvents is also reported and the spectral response of 3,5-DISA toward the variation of medium acidity/basicity has been exploited to decipher the nature of various species present in different solvents. Our experimental results, unveiling the occurrence of an ESIPT reaction in 3,5-DISA, have been aptly substantiated from computational studies in which the operation of ESIPT has been explored from structural as well as energetics (analysis of potential energy surface (PES)) perspectives. A major focus of the present study is on the evaluation of the intramolecular hydrogen bond (IMHB) interaction in 3,5-DISA, including the application of various methodologies to estimate the IMHB energy and subsequently, an in-depth analysis of the IMHB interaction reveals its partially covalent nature through the application of advanced quantum chemical tools, e.g., the natural bond orbital (NBO) method. In this context, the interplay between the aromaticity of the benzene nucleus and the IMHB energy has been rigorously explored, showing indications for the occurrence of resonance-assisted hydrogen bonding (RAHB) in 3,5-DISA. To this end, the geometric as well as magnetic criteria of aromaticity have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Singh, S. Mahanta, S. Kar and N. Guchhait, Photophysical properties of 1-hydroxy-2-naphthaldehyde: A combined fluorescence spectroscopy and quantum chemical calculations, Chem. Phys., 2007, 331, 373–384.

    Article  CAS  Google Scholar 

  2. P. B. Bisht, M. Okamoto and S. Hirayama, Effect of high pressure on enol-keto tautomerization in salicylic acid: A study by steady-state absorption and fluorescence measurements, J. Phys. Chem. B, 1997, 101, 8850–8855.

    Article  CAS  Google Scholar 

  3. B. K. Paul, A. Samanta and N. Guchhait, Deciphering the photophysics of 5-chlorosalicylic acid: Evidence for excited-state intramolecular proton transfer, Photochem. Photobiol. Sci., 2010, 9, 57–67.

    Article  CAS  PubMed  Google Scholar 

  4. J. Catalan, J. L. G. de Paz, On the inoperativeness of the ESIPT process in the emission of 1-hydroxy-2-acetonaphthone: A reappraisal, J. Phys. Chem. A, 2008, 112, 904–914.

    Article  CAS  PubMed  Google Scholar 

  5. H.-H. G. Tsai, H.-L. S. Sun, C.-J. Tan, TD-DFT study of the excited-state potential energy surfaces of 2-(2’-hydroxyphenyl)benzimidazole and its amino derivatives, J. Phys. Chem. A, 2010, 114, 4065–4079.

    Article  CAS  PubMed  Google Scholar 

  6. A. L. Sobolewski and W. Domcke, Photophysics of intramolecularly hydrogen-bonded aromatic systems: Ab Initio exploration of the excited-state deactivation mechanisms of salicylic acid, Phys. Chem. Chem. Phys., 2006, 8, 3410–3417.

    Article  CAS  PubMed  Google Scholar 

  7. J. Catalan, J. C. del Valle, Toward the photostability mechanism of intramolecular hydrogen bond systems. The photophysics of 1’-hydroxy-2’-acetonaphthone, J. Am. Chem. Soc., 1993, 115, 4321–4325.

    Article  CAS  Google Scholar 

  8. M. E. Balmer, H.-R. Buser, M. D. Muller and T. Poiger, Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss lakes, Environ. Sci. Technol., 2005, 39, 953–962.

    Article  CAS  PubMed  Google Scholar 

  9. N. P. Ernsting and B. Nikolaus, Dye-laser pulse shortening by transient absorption following excited-state intramolecular proton transfer, Appl. Phys. B, 1986, 39, 155–164.

    Article  Google Scholar 

  10. P.-T. Chou, M. L. Martinez and J. H. Clements, The observation of solvent-dependent proton-transfer/charge-transfer lasers from 4’-diethylamino-3-hydroxyflavone, Chem. Phys. Lett., 1993, 204, 395–399.

    Article  CAS  Google Scholar 

  11. P. Chou, D. McMorrow, T. J. Aartsna and M. Kasha, The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone, J. Phys. Chem., 1984, 88, 4596–4599.

    Article  CAS  Google Scholar 

  12. K. Brunner, A. v. Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. M. Kiggen and B. M. W. Langeveld, Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: Tuning the HOMO level without influencing the triplet energy in small molecules, J. Am. Chem. Soc., 2004, 126, 6035–6042.

    Article  CAS  PubMed  Google Scholar 

  13. S. J. Lim, J. Seo and S. Y. Park, Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence: A unique route to high-contrast memory switching and nondestructive readout, J. Am. Chem. Soc., 2006, 128, 14542–14547.

    Article  CAS  PubMed  Google Scholar 

  14. B. K. Paul, A. Samanta and N. Guchhait, Modulation of excited-state intramolecular proton transfer reaction of 1-hydroxy-2-naphthaldehyde in different supramolecular assemblies, Langmuir, 2010, 26, 3214–3224.

    Article  CAS  PubMed  Google Scholar 

  15. B. K. Paul, D. Ray and N. Guchhait, Spectral deciphering of the interaction between an intramolecular hydrogen bonded ESIPT drug, 3,5-dichlorosalicylic acid, and a model transport protein, Phys. Chem. Chem. Phys., 2012, 14, 8892–8902.

    Article  CAS  PubMed  Google Scholar 

  16. D. Ray, B. K. Paul and N. Guchhait, Effect of biological confinement on the photophysics and dynamics of a proton-transfer phototautomer: An exploration of excitation and emission wavelength-dependent photophysics of the protein-bound drug, Phys. Chem. Chem. Phys., 2012, 14, 12182–12192.

    Article  CAS  PubMed  Google Scholar 

  17. K. Sahu, D. Roy, S. K. Mondal, R. Karmakar and K. Bhattacharyya, Study of protein–surfactant interaction using excited state proton transfer, Chem. Phys. Lett., 2005, 404, 341–345.

    Article  CAS  Google Scholar 

  18. A. Sytnik and M. Kasha, Excited-state intramolecular proton transfer as a fluorescence probe for protein binding-site static polarity, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 8627–8630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. B. K. Paul, A. Samanta and N. Guchhait, Influence of chlorine substitution on intramolecular hydrogen bond energy and ESIPT barrier: Experimental and theoretical measurements on the photophysics of 3,5-dichlorosalicylicacid, J. Mol. Struct., 2010, 977, 78–89.

    Article  CAS  Google Scholar 

  20. B. K. Paul, A. Samanta and N. Guchhait, On the photophysics of 3,5,6-trichlorosalicylic acid: Spectroscopic study combined with Hartree-Fock and density functional theory calculations, J. Fluoresc., 2011, 21, 1265–1279.

    Article  CAS  PubMed  Google Scholar 

  21. B. K. Paul and N. Guchhait, Geometrical criteria versus quantum chemical criteria for assessment of intramolecular hydrogen bond (IMHB) interaction: A computational comparison into the effect of chlorine substitution on IMHB of salicylic acid in its lowest energy ground state conformer, Chem. Phys., 2013, 412, 58–67.

    Article  CAS  Google Scholar 

  22. A. U. Acuna, F. Amat-Guerri, J. Catalan, F. Gonzalez-Tablas, Dual fluorescence and ground state equilibriums in methyl salicylate, methyl 3-chlorosalicylate, and methyl 3-tert-butylsalicylate, J. Phys. Chem., 1980, 84, 629–631.

    Article  CAS  Google Scholar 

  23. R. W. Gora, S. J. Grabowski and J. Leszczynski, Dimers of formic acid, acetic acid, formamide and pyrrole-2-carboxylic acid: An Ab Initio study, J. Phys. Chem. A, 2005, 109, 6397–6405.

    Article  CAS  PubMed  Google Scholar 

  24. F. Lahmani, A. Zehnacker-Rentien, Effect of substitution on the photoinduced intramolecular proton transfer in salicylic acid, J. Phys. Chem. A, 1997, 101, 6141–6147.

    Article  CAS  Google Scholar 

  25. L. Rodriguez-Santiago, M. Sodupe, A. Oliva and J. Berntran, Hydrogen atom or proton transfer in neutral and single positive ions of salicylic acid and related compounds, J. Am. Chem. Soc., 1999, 121, 8882–8890.

    Article  CAS  Google Scholar 

  26. G.-J. Zhao, K.-L. Han, Hydrogen bonding in the electronic excited state, Acc. Chem. Res., 2012, 45, 404–413.

    Article  CAS  PubMed  Google Scholar 

  27. E. D. Glendening, A. E. Reed, J. E. Carpenter and F. A. Weinhold, NBO, Version 3.1, 1995.

    Google Scholar 

  28. A. E. Reed, L. A. Curtiss and F. A. Weinhold, Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint, Chem. Rev., 1988, 88, 899–926.

    Article  CAS  Google Scholar 

  29. G. Gilli and V. Bertolasi, in The chemistry of enols, ed. Z. Rappoport, Wiley, Chichester, UK, ch. 13, 1990.

  30. P. A. Mackowiak, Brief history of antipyretic therapy, Clin. Infect. Dis., 2000, 31, 154–156.

    Article  Google Scholar 

  31. W. E. Roberts, Chemical peeling in ethnic/dark skin, Dermatol. Ther., 2004, 17, 196–205.

    Article  PubMed  Google Scholar 

  32. J. R. Lakowicz, Principles of fluorescence spectroscopy, Plenum, New York, 1999.

    Book  Google Scholar 

  33. M. J. Frisch, et al., Gaussian 09, Revision A.02-SMP, Gaussian Inc., Wallingford, CT, 2009.

    Google Scholar 

  34. W. J. Hehre, L. Radom, P. V. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

    Google Scholar 

  35. B. K. Paul, S. Mahanta, R. B. Singh and N. Guchhait, A DFT-based theoretical study on the photophysics of 4-hydroxyacridine: Single-water-mediated excited state proton transfer, J. Phys. Chem. A, 2010, 114, 2618–2627.

    Article  CAS  PubMed  Google Scholar 

  36. M. Cossi, V. Barone, B. Mennucci and J. Tomasi, Ab initio study of ionic solutions by a polarizable continuum dielectric model, Chem. Phys. Lett., 1998, 286, 253–260.

    Article  CAS  Google Scholar 

  37. B. Mennucci and J. Tomasi, Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries, J. Chem. Phys., 1997, 106, 5151–5158.

    Article  CAS  Google Scholar 

  38. J. Kruszewski and T. M. Krygowski, Definition of aromaticity basing on the harmonic oscillator model, Tetrahedron Lett., 1972, 13, 3839–3842.

    Article  Google Scholar 

  39. T. M. Krygowski and M. K. Cyranski, Structural aspects of aromaticity, Chem. Rev., 2001, 101, 1385–1419.

    Article  CAS  PubMed  Google Scholar 

  40. P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, Nucleus-independent chemical shifts: A simple and efficient aromaticity probe, J. Am. Chem. Soc., 1996, 118, 6317–6318.

    Article  CAS  PubMed  Google Scholar 

  41. P. Lazzeretti, Assessment of aromaticity via molecular response properties, Phys. Chem. Chem. Phys., 2004, 6, 217–223.

    Article  CAS  Google Scholar 

  42. J. Aihara, Nucleus-independent chemical shifts and local aromaticities in large polycyclic aromatichydrocarbons, Chem. Phys. Lett., 2002, 365, 34–39.

    Article  CAS  Google Scholar 

  43. P. B. Bisht, H. Petek, K. Yoshihara and U. Nagashima, Excited state enol-keto tautomerisation in salicylic acid: A supersonic free jet study, J. Chem. Phys., 1995, 103, 5290–5307.

    Article  CAS  Google Scholar 

  44. I. P. Pozdnyakov, A. Pigliucci, N. Tkachenko, V. F. Plyusnin, E. Vauthey and H. Lemmetyinen, The photophysics of salicylic acid derivatives in aqueous solution, J. Phys. Org. Chem., 2009, 22, 449–454.

    Article  CAS  Google Scholar 

  45. V. Khorwal, B. Sadhu, A. Dey, M. Sundararajan and A. Datta, Modulation of protonation-deprotonation processes of 2-(4’-pyridyl)benzimidazole in its inclusion complexes with cyclodextrins, J. Phys. Chem. B, 2013, 117, 8603–8610.

    Article  CAS  PubMed  Google Scholar 

  46. G.-J. Zhao, K.-L. Han and P. J. Stang, Theoretical insights into hydrogen bonding and its influence on the structural and spectral properties of aquo palladium(II) complexes: cis-[(dppp)Pd(H2O)2]2+, cis-[(dppp)Pd(H2O)(OSO2CF3)]+(OSO2CF3)-, and cis-[(dppp)Pd(H2O)2]2+(OSO2CF3)-2, J. Chem. Theory Comput., 2009, 5, 1955–1958.

    Article  CAS  PubMed  Google Scholar 

  47. G.-J. Zhao, K.-L. Han, Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: Theoretical study, J. Phys. Chem. A, 2007, 111, 2469–2474.

    Article  CAS  PubMed  Google Scholar 

  48. G.-J. Zhao, K.-L. Han, Role of intramolecular and intermolecular hydrogen bonding in both singlet and triplet excited states of aminofluorenones on internal conversion, intersystem crossing, and twisted intramolecular charge transfer, J. Phys. Chem. A, 2009, 113, 14329–14335.

    Article  CAS  PubMed  Google Scholar 

  49. G.-J. Zhao, K.-L. Han, Effects of hydrogen bonding on tuning photochemistry: Concerted hydrogen-bond strengthening and weakening, ChemPhysChem, 2008, 9, 1842–1846.

    Article  CAS  PubMed  Google Scholar 

  50. G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, K.-L. Han, Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: A new fluorescence quenching mechanism, J. Phys. Chem. B, 2007, 111, 8940–8945.

    Article  CAS  PubMed  Google Scholar 

  51. P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical sciences, WCB/McGraw-Hill, Boston, 2nd edn, 1992, ch. 8.

    Google Scholar 

  52. M. Fores, M. Duran, M. Sola, M. Orozco and F. J. Luque, Theoretical evaluation of solvent effects on the conformational and tautomeric equilibria of 2-(2’-hydroxyphenyl)benzimidazole and on its absorption and fluorescence spectra, J. Phys. Chem. A, 1999, 103, 4525–4532.

    Article  CAS  Google Scholar 

  53. B. K. Paul, A. Ganguly and N. Guchhait, Quantum chemical exploration of the intramolecular hydrogen bond interaction in 2-thiazol-2-yl-phenol and 2-benzothiazol-2-yl-phenol in the context of excited-state intramolecular proton transfer: A focus on the covalency in hydrogen bond, Spectrochim. Acta, Part A, 2014, 131, 72–81.

    Article  CAS  Google Scholar 

  54. S. J. Grabowski, What is the covalency of hydrogen bonding?, Chem. Rev., 2011, 111, 2597–2625.

    Article  CAS  PubMed  Google Scholar 

  55. R. N. Musin and Y. H. Mariam, An integrated approach to the study of intramolecular hydrogen bonds in malonaldehyde enol derivatives and naphthazarin: Trend in energetic versus geometrical consequences, J. Phys. Org. Chem., 2006, 19, 425–444.

    Article  CAS  Google Scholar 

  56. M. Jablonski, A. Kaczmarek and A. J. Sadlej, Estimates of the energy of intramolecular hydrogen bonds, J. Phys. Chem. A, 2006, 110, 10890–10898.

    Article  CAS  PubMed  Google Scholar 

  57. J. N. Woodford, Density functional theory and atoms-in-molecules investigation of intramolecular hydrogen bonding in derivatives of malonaldehyde and implications for resonance-assisted hydrogen bonding, J. Phys. Chem. A, 2007, 111, 8519–8530.

    Article  CAS  PubMed  Google Scholar 

  58. M. Palusiak, S. Simon and M. Sola, Interplay between intramolecular resonance-assisted hydrogen bonding and aromaticity in o-hydroxyaryl aldehydes, J. Org. Chem., 2006, 71, 5241–5248. and references therein.

    Article  CAS  PubMed  Google Scholar 

  59. E. Clar, In the aromatic sextet, Wiley, London, 1972.

    Google Scholar 

  60. M. Randic and A. T. Balaban, Partitioning of p-electrons in rings for Clar structures of benzenoid hydrocarbons, J. Chem. Inf. Model., 2006, 46, 57–64.

    Article  CAS  PubMed  Google Scholar 

  61. M. Randic, Aromaticity of polycyclic conjugated hydrocarbons, Chem. Rev., 2003, 103, 3449–3606.

    Article  CAS  PubMed  Google Scholar 

  62. G.-J. Zhao, K.-L. Han, Site-specific solvation of the photoexcited protochlorophyllide a in methanol:Formation of the hydrogen-bonded intermediate state induced by hydrogen-bond strengthening, Biophys. J., 2008, 94, 38–46.

    Article  CAS  PubMed  Google Scholar 

  63. J. Zhao, P. Song and F. Ma, A new excited-state intramolecular proton transfer mechanism for C2 symmetry of 10-hydroxybenzoquinoline, Commun. Comput. Chem., 2014, 2, 117–130.

    Article  Google Scholar 

  64. S. Lochbrunner, Femtosecond pump–probe spectroscopy of photoinduced tautomerism, in tautomerism: Methods and theories, ed. L. Antonov, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013.

  65. M. Macernis, B. P. Kietis, J. Sulskus, S. H. Lin, M. Hayashi and L. Valkunas, Triggering the proton transfer by H-bond network, Chem. Phys. Lett., 2008, 466, 233–226.

  66. R. Karpicz, V. Gulbinas, A. Lewanowicz, M. Macernis, J. Sulskus and L. Valkunas, Relaxation pathways of excited N-triphenylmethylsalicylidene imine in solutions, J. Phys. Chem. A, 2011, 115, 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  67. R. Misra, S. P. Bhattacharyya and A. Mandal, Spectral response of 4-methyl-2,6-dicarbomethoxyphenol, an excited-state intramolecular proton-transfer probe in cyclohexaneethanol mixtures: Signatures of medium microheterogeneity, J. Phys. Chem. B, 2011, 115, 11840–11851.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bijan K. Paul or Saptarshi Mukherjee.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c5pp00033e

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B.K., Ghosh, N., Mondal, R. et al. A critical approach toward resonance-assistance in the intramolecular hydrogen bond interaction of 3,5-diiodosalicylic acid: a spectroscopic and computational investigation. Photochem Photobiol Sci 14, 1147–1162 (2015). https://doi.org/10.1039/c5pp00033e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00033e

Navigation