Skip to main content
Log in

Photo-damage, photo-protection and age-related macular degeneration

  • Perspectives
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is a degenerative retinal disease that causes blindness in people 60–65 years and older, with the highest prevalence appearing in people 90 years-old or more. Epidemiological estimates indicate that the number of cases is increasing, and will almost double in the next 20 years. Preventive measures require precise etiological knowledge. This is quite difficult, since AMD is a multifactorial condition with intricate relationships between causes and risk factors. In this review, we describe the impact of light on the structure and physiology of the retina and the pigment epithelium, taking into account the continuous exposure to natural and artificial light sources along the life of an individual. A large body of experimental evidence demonstrates the toxic effects of some lighting conditions on the retina and the pigment epithelium, and consensus exists about the importance of photo-oxidation phenomena in the causality chain between light and retinal damage. Here, we analyzed the transmission of light to the retina, and compared the aging human macula in healthy and diseased retinas, as shown by histology and non-invasive imaging systems. Finally, we have compared the putative retinal photo-sensitive molecular structures that might be involved in the genesis of AMD. The relationship between these compounds and retinal damage supports the hypothesis of light as an important initiating cause of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Zhang, A. J. Tatham, R. N. Weinreb, L. M. Zangwill, Z. Yang, J. Z. Zhang and F. A. Medeiros, Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula, Ophthalmology, 2014, 121, 2371–2379.

    Article  PubMed  Google Scholar 

  2. J. M. Provis, P. L. Penfold, E. E. Cornish, T. M. Sandercoe and M. C. Madigan, Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration, Clin. Exp. Optom., 2005, 88, 269–281.

    Article  PubMed  Google Scholar 

  3. C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin and R. F. Spaide, Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections, Invest Ophthalmol. Vis. Sci., 2011, 52, 3943–3954.

    Article  PubMed  PubMed Central  Google Scholar 

  4. C. G. Owen, Z. Jarrar, R. Wormald, D. G. Cook, A. E. Fletcher and A. R. Rudnicka, The estimated prevalence and incidence of late stage age related macular degeneration in the UK, Br. J. Ophthalmol., 2012, 96, 752–756.

    Article  PubMed  Google Scholar 

  5. B. Feigl, B. Brown, J. Lovie-Kitchin and P. Swann, Cone- and rod-mediated multifocal electroretinogram in early age-related maculopathy, Eye, 2005, 19, 431–441.

    Article  CAS  PubMed  Google Scholar 

  6. S. Sadigh, A. V. Cideciyan, A. Sumaroka, W. C. Huang, X. Luo, M. Swider, J. D. Steinberg, D. Stambolian and S. G. Jacobson, Abnormal thickening as well as thinning of the photoreceptor layer in intermediate age-related macular degeneration, Invest Ophthalmol. Vis. Sci., 2013, 54, 1603–1612.

    Article  PubMed  Google Scholar 

  7. F. L. Ferris 3rd, C. P. Wilkinson, A. Bird, U. Chakravarthy, E. Chew, K. Csaky, S. R. Sadda and C. Beckman, Initiative for Macular Research Classification, Clinical classification of age-related macular degeneration, Ophthalmology, 2013, 120, 844–851.

    Article  PubMed  Google Scholar 

  8. J. Ambati, J. P. Atkinson and B. D. Gelfand, Immunology of age-related macular degeneration, Nat. Rev. Immunol., 2013, 13, 438–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. W. L. Wong, X. Su, X. Li, C. M. Cheung, R. Klein, C. Y. Cheng and T. Y. Wong, Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis, Lancet. Global Health, 2014, 2, e106–e116.

    Article  PubMed  Google Scholar 

  10. R. R. Bourne, J. B. Jonas, S. R. Flaxman, J. Keeffe, J. Leasher, K. Naidoo, M. B. Parodi, K. Pesudovs, H. Price, R. A. White, T. Y. Wong, S. Resnikoff, H. R. Taylor and S. Vision Loss Expert Group of the Global Burden of Disease, Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010, Br. J. Ophthalmol., 2014, 98, 629–638.

    Article  PubMed  Google Scholar 

  11. J. L. Leasher, V. Lansingh, S. R. Flaxman, J. B. Jonas, J. Keeffe, K. Naidoo, K. Pesudovs, H. Price, J. C. Silva, R. A. White, T. Y. Wong, S. Resnikoff, H. R. Taylor, R. R. Bourne, S. Vision Loss Expert Group of the Global Burden of Disease, Prevalence and causes of vision loss in Latin America and the Caribbean: 1990–2010, Br. J. Ophthalmol., 2014, 98, 619–628.

    Article  PubMed  Google Scholar 

  12. NEI, Age-related macular degeneration (AMD), https://www.nei.nih.gov/eyedata/amd#6, (accessed 04/20/2015, 2015).

  13. S. Beatty, H. Koh, M. Phil, D. Henson and M. Boulton, The role of oxidative stress in the pathogenesis of age-related macular degeneration, Surv. Ophthalmol., 2000, 45, 115–134.

    Article  CAS  PubMed  Google Scholar 

  14. B. S. Winkler, M. E. Boulton, J. D. Gottsch and P. Sternberg, Oxidative damage and age-related macular degeneration, Mol. Vis., 1999, 5, 32.

    CAS  PubMed  Google Scholar 

  15. S. G. Jarrett and M. E. Boulton, Consequences of oxidative stress in age-related macular degeneration, Mol. Aspects Med., 2012, 33, 399–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. C. Khan, D. A. Thurlby, H. Shahid, D. G. Clayton, J. R. Yates, M. Bradley, A. T. Moore and A. C. Bird, Smoking and age related macular degeneration: the number of pack years of cigarette smoking is a major determinant of risk for both geographic atrophy and choroidal neovascularisation, Br. J. Ophthalmol., 2006, 90, 75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Cano, R. Thimmalappula, M. Fujihara, N. Nagai, M. Sporn, A. L. Wang, A. H. Neufeld, S. Biswal and J. T. Handa, Cigarette smoking, oxidative stress, the anti-oxidant response through Nrf2 signaling, and Age-related Macular Degeneration, Vision. Res., 2010, 50, 652–664.

    Article  CAS  PubMed  Google Scholar 

  18. A. Woodell and B. Rohrer, A mechanistic review of cigarette smoke and age-related macular degeneration, Adv. Exp. Med. Biol., 2014, 801, 301–307.

    Article  PubMed  Google Scholar 

  19. J. M. Seddon, J. Cote, W. F. Page, S. H. Aggen and M. C. Neale, The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences, Arch. Ophthalmol., 2005, 123, 321–327.

    Article  PubMed  Google Scholar 

  20. J. N. Cooke Bailey, M. A. Pericak-Vance and J. L. Haines, Genome-Wide Association Studies: Getting to Pathogenesis, the Role of Inflammation/Complement in Age-Related Macular Degeneration, Cold Spring Harbor Perspect. Med., 2014, 4, a017186–a017186.

    Article  CAS  Google Scholar 

  21. J. G. Hollyfield, V. L. Bonilha, M. E. Rayborn, X. Yang, K. G. Shadrach, L. Lu, R. L. Ufret, R. G. Salomon and V. L. Perez, Oxidative damage-induced inflammation initiates age-related macular degeneration, Nat. Med., 2008, 14, 194–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R. D. Glickman, Phototoxicity to the retina: mechanisms of damage, Int. J. Toxicol., 2002, 21, 473–490.

    Article  CAS  PubMed  Google Scholar 

  23. M. Boulton, M. Rozanowska and B. Rozanowski, Retinal photodamage, J. Photochem. Photobiol., B, 2001, 64, 144–161.

    Article  CAS  Google Scholar 

  24. D. Balasubramanian, Ultraviolet radiation and cataract, J. Ocul. Pharmacol. Ther., 2000, 16, 285–297.

    Article  CAS  PubMed  Google Scholar 

  25. D. H. Sliney, Eye protective techniques for bright light, Ophthalmology, 1983, 90, 937–944.

    Article  CAS  PubMed  Google Scholar 

  26. J. M. Stringham, K. Fuld and A. J. Wenzel, Action spectrum for photophobia, J. Opt. Soc. Am. A, 2003, 20, 1852–1858.

    Article  Google Scholar 

  27. J. J. Hunter, J. I. Morgan, W. H. Merigan, D. H. Sliney, J. R. Sparrow and D. R. Williams, The susceptibility of the retina to photochemical damage from visible light, Prog. Retin. Eye Res., 2012, 31, 28–42.

    Article  PubMed  Google Scholar 

  28. H. R. Taylor, B. Munoz, S. West, N. M. Bressler, S. B. Bressler and F. S. Rosenthal, Visible light and risk of age-related macular degeneration, Trans. Am. Ophthalmol. Soc., 1990, 88, 163–173; discussion 173–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. H. R. Taylor, S. West, B. Munoz, F. S. Rosenthal, S. B. Bressler and N. M. Bressler, The long-term effects of visible light on the eye, Arch. Ophthalmol., 1992, 110, 99–104.

    Article  CAS  PubMed  Google Scholar 

  30. S. C. Tomany, K. J. Cruickshanks, R. Klein, B. E. Klein and M. D. Knudtson, Sunlight and the 10-year incidence of age-related maculopathy: the Beaver Dam Eye Study, Arch. Ophthalmol., 2004, 122, 750–757.

    Article  PubMed  Google Scholar 

  31. B. Vojnikovic, S. Njiric, M. Coklo and J. Spanjol, Ultraviolet sun radiation and incidence of age-related macular degeneration on Croatian Island Rab, Coll. Antropol., 2007, 31Suppl 1, 43–44.

    PubMed  Google Scholar 

  32. S. K. West, F. S. Rosenthal, N. M. Bressler, S. B. Bressler, B. Munoz, S. L. Fine and H. R. Taylor, Exposure to sunlight and other risk factors for age-related macular degeneration, Arch. Ophthalmol., 1989, 107, 875–879.

    Article  CAS  PubMed  Google Scholar 

  33. J. C. Khan, H. Shahid, D. A. Thurlby, M. Bradley, D. G. Clayton, A. T. Moore, A. C. Bird, J. R. Yates, A. M. D. S. Genetic Factors, Age related macular degeneration and sun exposure, iris colour, and skin sensitivity to sunlight, Br. J. Ophthalmol., 2006, 90, 29–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Darzins, P. Mitchell and R. F. Heller, Sun exposure and age-related macular degeneration. An Australian case-control study, Ophthalmology, 1997, 104, 770–776.

    Article  CAS  PubMed  Google Scholar 

  35. G. Y. Sui, G. C. Liu, G. Y. Liu, Y. Y. Gao, Y. Deng, W. Y. Wang, S. H. Tong and L. Wang, Is sunlight exposure a risk factor for age-related macular degeneration? A systematic review and meta-analysis, Br. J. Ophthalmol., 2013, 97, 389–394.

    Article  PubMed  Google Scholar 

  36. M. Hirakawa, M. Tanaka, Y. Tanaka, A. Okubo, C. Koriyama, M. Tsuji, S. Akiba, K. Miyamoto, G. Hillebrand, T. Yamashita and T. Sakamoto, Age-related maculopathy and sunlight exposure evaluated by objective measurement, Br. J. Ophthalmol., 2008, 92, 630–634.

    Article  CAS  PubMed  Google Scholar 

  37. K. J. Cruickshanks, R. Klein and B. E. Klein, Sunlight and age-related macular degeneration. The Beaver Dam Eye Study, Arch. Ophthalmol., 1993, 111, 514–518.

    Article  CAS  PubMed  Google Scholar 

  38. A. E. Fletcher, G. C. Bentham, M. Agnew, I. S. Young, C. Augood, U. Chakravarthy, P. T. de Jong, M. Rahu, J. Seland, G. Soubrane, L. Tomazzoli, F. Topouzis, J. R. Vingerling and J. Vioque, Sunlight exposure, antioxidants, and age-related macular degeneration, Arch. Ophthalmol., 2008, 126, 1396–1403.

    Article  PubMed  Google Scholar 

  39. M. Cellini, V. Profazio, P. Fantaguzzi, E. Barbaresi, L. Longanesi and R. Caramazza, Photic maculopathy by arc welding. A case report, Int. Ophthalmol., 1987, 10, 157–159.

    Article  CAS  PubMed  Google Scholar 

  40. M. Vukicevic and W. Heriot, Phototoxic maculopathy associated with arc welding: clinical findings and associated functional vision impairment, Clin. Experiment. Ophthalmol., 2008, 36, 695–697.

    Article  PubMed  Google Scholar 

  41. X. Yang, D. Shao, X. Ding, X. Liang, J. Yang and J. Li, Chronic phototoxic maculopathy caused by welding arc in occupational welders, Can. J. Ophthalmol., 2012, 47, 45–50.

    Article  PubMed  Google Scholar 

  42. ICNIRP, Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 μm). International Commission on Non-Ionizing Radiation Protection, Health Phys., 1997, 73, 539–554.

    Google Scholar 

  43. F. Behar-Cohen, C. Martinsons, F. Vienot, G. Zissis, A. Barlier-Salsi, J. P. Cesarini, O. Enouf, M. Garcia, S. Picaud and D. Attia, Light-emitting diodes (LED) for domestic lighting: any risks for the eye?, Prog. Retin. Eye Res., 2011, 30, 239–257.

    Article  CAS  PubMed  Google Scholar 

  44. I. Jaadane, P. Boulenguez, S. Chahory, S. Carre, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons and A. Torriglia, Retinal damage induced by commercial light emitting Diodes (LED), Free Radicals Biol. Med., 2015, 84, 373–384.

    Article  CAS  Google Scholar 

  45. Building Technologies Office, Solid-state lighting technology fact sheet, U.S. Department of Energy, PNNL-SA-96340, June 2013, http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/opticalsafety_fact-sheet.pdf.

    Google Scholar 

  46. Y. M. Shang, G. S. Wang, D. Sliney, C. H. Yang and L. L. Lee, White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model, Environ. Health Perspect., 2014, 122, 269–276.

    Article  PubMed  Google Scholar 

  47. Y. Kuse, K. Ogawa, K. Tsuruma, M. Shimazawa and H. Hara, Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light, Sci. Rep., 2014, 4, 5223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Smith Bright, Emergency vehicle LED lighting: friend or foe?, School of Public Service and Health Public Administration, American Public University System, Master’s Capstone Theses, 76 pp, 2014. http://digitalcommons.apus.edu/cgi/viewcontent.cgi?article=1018&context=theses.

    Google Scholar 

  49. R. D. Glickman, Ultraviolet phototoxicity to the retina, Eye Contact Lens, 2011, 37, 196–205.

    Article  PubMed  Google Scholar 

  50. E. R. Gaillard, L. Zheng, J. C. Merriam and J. Dillon, Age-related changes in the absorption characteristics of the primate lens, Invest. Ophthalmol. Vis. Sci., 2000, 41, 1454–1459.

    CAS  PubMed  Google Scholar 

  51. F. Avila, B. Friguet and E. Silva, Photosensitizing Activity of Endogenous Eye Lens Chromophores: An Attempt to Unravel Their Contributions to Photo-Aging and Cataract Disease, Photochem. Photobiol., 2015, 91, 767–779.

    Article  CAS  PubMed  Google Scholar 

  52. J. Dillon, L. Zheng, J. C. Merriam and E. R. Gaillard, Transmission of light to the aging human retina: possible implications for age related macular degeneration, Exp. Eye Res., 2004, 79, 753–759.

    Article  CAS  PubMed  Google Scholar 

  53. S. Vazquez, N. R. Parker, M. Sheil and R. J. Truscott, Protein-bound kynurenine decreases with the progression of age-related nuclear cataract, Invest. Ophthalmol. Vis. Sci., 2004, 45, 879–883.

    Article  PubMed  Google Scholar 

  54. E. R. Gaillard, J. Merriam, L. Zheng and J. Dillon, Transmission of light to the young primate retina: possible implications for the formation of lipofuscin, Photochem. Photobiol., 2011, 87, 18–21.

    Article  CAS  PubMed  Google Scholar 

  55. C. Brockmann, M. Schulz and T. Laube, Transmittance characteristics of ultraviolet and blue-light-filtering intraocular lenses, J. Cataract Refract. Surg., 2008, 34, 1161–1166.

    Article  PubMed  Google Scholar 

  56. S. Cugati, P. Mitchell, E. Rochtchina, A. G. Tan, W. Smith and J. J. Wang, Cataract surgery and the 10-year incidence of age-related maculopathy: the Blue Mountains Eye Study, Ophthalmology, 2006, 113, 2020–2025.

    Article  PubMed  Google Scholar 

  57. J. M. Nolan, P. O’Reilly, J. Loughman, J. Stack, E. Loane, E. Connolly and S. Beatty, Augmentation of macular pigment following implantation of blue light-filtering intraocular lenses at the time of cataract surgery, Invest. Ophthalmol. Vis. Sci., 2009, 50, 4777–4785.

    Article  PubMed  Google Scholar 

  58. M. Tanito, T. Okuno, Y. Ishiba and A. Ohira, Transmission spectrums and retinal blue-light irradiance values of untinted and yellow-tinted intraocular lenses, J. Cataract Refract. Surg., 2010, 36, 299–307.

    Article  PubMed  Google Scholar 

  59. R. J. Lucas, S. N. Peirson, D. M. Berson, T. M. Brown, H. M. Cooper, C. A. Czeisler, M. G. Figueiro, P. D. Gamlin, S. W. Lockley, J. B. O’Hagan, L. L. Price, I. Provencio, D. J. Skene and G. C. Brainard, Measuring and using light in the melanopsin age, Trends Neurosci., 2014, 37, 1–9.

    Article  CAS  PubMed  Google Scholar 

  60. M. A. Mainster and P. L. Turner, Blue-blocking IOLs vs. short-wavelength visible light: hypothesis-based vs. evidence-based medical practice, Ophthalmology, 2011, 118, 1–2.

    Article  PubMed  Google Scholar 

  61. A. E. Brondsted, J. H. Lundeman and L. Kessel, Short wavelength light filtering by the natural human lens and IOLs–implications for entrainment of circadian rhythm, Acta Ophthalmol., 2013, 91, 52–57.

    Article  CAS  PubMed  Google Scholar 

  62. I. Alexander, F. M. Cuthbertson, G. Ratnarajan, R. Safa, F. E. Mellington, R. G. Foster, S. M. Downes and K. Wulff, Impact of cataract surgery on sleep in patients receiving either ultraviolet-blocking or blue-filtering intraocular lens implants, Invest. Ophthalmol. Vis. Sci., 2014, 55, 4999–5004.

    Article  PubMed  PubMed Central  Google Scholar 

  63. A. Pipis, E. Touliou, L. E. Pillunat and A. J. Augustin, Effect of the blue filter intraocular lens on the progression of geographic atrophy, Eur. J. Ophthalmol., 2015, 25, 128–133.

    Article  PubMed  Google Scholar 

  64. F. Khachik, P. S. Bernstein and D. L. Garland, Identification of lutein and zeaxanthin oxidation products in human and monkey retinas, Invest. Ophthalmol. Vis. Sci., 1997, 38, 1802–1811.

    CAS  PubMed  Google Scholar 

  65. B. Li, P. Vachali and P. S. Bernstein, Human ocular carotenoid-binding proteins, Photochem. Photobiol. Sci., 2010, 9, 1418–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. B. Li, P. P. Vachali, A. Gorusupudi, Z. Shen, H. Sharifzadeh, B. M. Besch, K. Nelson, M. M. Horvath, J. M. Frederick, W. Baehr and P. S. Bernstein, Inactivity of human beta,beta-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10173–10178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. S. Sabour-Pickett, J. M. Nolan, J. Loughman and S. Beatty, A review of the evidence germane to the putative protective role of the macular carotenoids for age-related macular degeneration, Mol. Nutr. Food Res., 2012, 56, 270–286.

    Article  CAS  PubMed  Google Scholar 

  68. J. L. Dennison, J. Stack, S. Beatty and J. M. Nolan, Concordance of macular pigment measurements obtained using customized heterochromatic flicker photometry, dual-wavelength autofluorescence, and single-wavelength reflectance, Exp. Eye Res., 2013, 116, 190–198.

    Article  CAS  PubMed  Google Scholar 

  69. P. Smolarek-Kasprzak, J. M. Nolan, S. Beatty, J. Dennison, K. O. Akuffo, R. Kuchling, J. Stack and G. O’Regan, Measuring Visual Function Using the MultiQuity System: Comparison with an Established Device, Br. J. Ophthalmol., 2014, 2014, 180317.

    Google Scholar 

  70. J. M. Nolan, K. Meagher, S. Kashani and S. Beatty, What is meso-zeaxanthin, and where does it come from?, Eye, 2013, 27, 899–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. L. M. Fletcher, M. Engles and B. R. Hammond Jr., Visibility through atmospheric haze and its relation to macular pigment, Optom. Vis. Sci., 2014, 91, 1089–1096.

    Article  PubMed  Google Scholar 

  72. J. M. Nolan, J. Stack, O. O’Donovan, E. Loane and S. Beatty, Risk factors for age-related maculopathy are associated with a relative lack of macular pigment, Exp. Eye Res., 2007, 84, 61–74.

    Article  CAS  PubMed  Google Scholar 

  73. Age-related Eye Disease Study (AREDS) Research Group, A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene and zinc for age-related macular degeneration and vision loss: AREDS report no. 8, Arch. Ophthalmol., 2001, 119.

    Google Scholar 

  74. Age-related Eye Disease Study (AREDS) Research Group, Lutein+zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial, JAMA, 2013, 309, 2005–2015.

    Article  CAS  Google Scholar 

  75. I. J. Murray, M. Makridaki, R. L. van der Veen, D. Carden, N. R. Parry and T. T. Berendschot, Lutein supplementation over a one-year period in early AMD might have a mild beneficial effect on visual acuity: the CLEAR study, Invest. Ophthalmol. Vis. Sci., 2013, 54, 1781–1788.

    Article  CAS  PubMed  Google Scholar 

  76. L. Ma, H. L. Dou, Y. M. Huang, X. R. Lu, X. R. Xu, F. Qian, Z. Y. Zou, H. L. Pang, P. C. Dong, X. Xiao, X. Wang, T. T. Sun and X. M. Lin, Improvement of retinal function in early age-related macular degeneration after lutein and zeaxanthin supplementation: a randomized, double-masked, placebo-controlled trial, Am. J. Ophthalmol., 2012, 154, 625–634, e1.

    Article  CAS  PubMed  Google Scholar 

  77. R. Liu, T. Wang, B. Zhang, L. Qin, C. Wu, Q. Li and L. Ma, Lutein and zeaxanthin supplementation and association with visual function in age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2015, 56, 252–258.

    Article  CAS  Google Scholar 

  78. J. J. Wang, G. H. Buitendijk, E. Rochtchina, K. E. Lee, B. E. Klein, C. M. van Duijn, V. M. Flood, S. M. Meuer, J. Attia, C. Myers, E. G. Holliday, A. G. Tan, W. T. Smith, S. K. Iyengar, P. T. de Jong, A. Hofman, J. R. Vingerling, P. Mitchell, R. Klein and C. C. Klaver, Genetic susceptibility, dietary antioxidants, and long-term incidence of age-related macular degeneration in two populations, Ophthalmology, 2014, 121, 667–675.

    Article  PubMed  Google Scholar 

  79. K. O. Akuffo, S. Beatty, J. Stack, J. Dennison, S. O’Regan, K. A. Meagher, T. Peto and J. Nolan, Central Retinal Enrichment Supplementation Trials (CREST): design and methodology of the CREST randomized controlled trials, Ophthalmic Epidemiol., 2014, 21, 111–123.

    Article  PubMed  PubMed Central  Google Scholar 

  80. R. Edge, D. J. McGarvey and T. G. Truscott, The carotenoids as anti-oxidants–a review, J. Photochem. Photobiol., B, 1997, 41, 189–200.

    Article  CAS  Google Scholar 

  81. S. R. Kim, K. Nakanishi, Y. Itagaki and J. R. Sparrow, Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin, Exp. Eye Res., 2006, 82, 828–839.

    Article  CAS  PubMed  Google Scholar 

  82. H. L. Ramkumar, J. Tuo, F. Shen de, J. Zhang, X. Cao, E. Y. Chew and C. C. Chan, Nutrient supplementation with n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background, J. Nutr., 2013, 143, 1129–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Q. Bian, S. Gao, J. Zhou, J. Qin, A. Taylor, E. J. Johnson, G. Tang, J. R. Sparrow, D. Gierhart and F. Shang, Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells, Free Radicals Biol. Med., 2012, 53, 1298–1307.

    Article  CAS  Google Scholar 

  84. X. Zou, J. Gao, Y. Zheng, X. Wang, C. Chen, K. Cao, J. Xu, Y. Li, W. Lu, J. Liu and Z. Feng, Zeaxanthin induces Nrf2-mediated phase II enzymes in protection of cell death, Cell Death Dis., 2014, 5, e1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. P. Meredith and T. Sarna, The physical and chemical properties of eumelanin, Pigment Cell Res., 2006, 19, 572–594.

    Article  CAS  PubMed  Google Scholar 

  86. D. N. Hu, J. D. Simon and T. Sarna, Role of ocular melanin in ophthalmic physiology and pathology, Photochem. Photobiol., 2008, 84, 639–644.

    Article  CAS  PubMed  Google Scholar 

  87. C. T. Chen, C. Chuang, J. Cao, V. Ball, D. Ruch and M. J. Buehler, Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin, Nat. Commun., 2014, 5, 3859.

    Article  CAS  PubMed  Google Scholar 

  88. M. Rozanowska, T. Sarna, E. J. Land and T. G. Truscott, Free radical scavenging properties of melanin interaction of eu- and pheo-melanin models with reducing and oxidising radicals, Free Radicals Biol. Med., 1999, 26, 518–525.

    Article  CAS  Google Scholar 

  89. R. N. Frank, J. E. Puklin, C. Stock and L. A. Canter, Race, iris color, and age-related macular degeneration, Trans. Am. Ophthalmol. Soc., 2000, 98, 109–115; discussion 115–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. B. E. Klein, K. P. Howard, S. K. Iyengar, T. A. Sivakumaran, K. J. Meyers, K. J. Cruickshanks and R. Klein, Sunlight exposure, pigmentation, and incident age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2014, 55, 5855–5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. C. Brockmann, T. Brockmann and J. Dawczynski, Influence of seasonal sunlight intensity and iris color on the anti-VEGF therapy for neovascular age-related macular degeneration, Eye, 2013, 27, 1169–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. E. G. Holliday, A. V. Smith, B. K. Cornes, G. H. Buitendijk, R. A. Jensen, X. Sim, T. Aspelund, T. Aung, P. N. Baird, E. Boerwinkle, C. Y. Cheng, C. M. van Duijn, G. Eiriksdottir, V. Gudnason, T. Harris, A. W. Hewitt, M. Inouye, F. Jonasson, B. E. Klein, L. Launer, X. Li, G. Liew, T. Lumley, P. McElduff, B. McKnight, P. Mitchell, B. M. Psaty, E. Rochtchina, J. I. Rotter, R. J. Scott, W. Tay, K. Taylor, Y. Y. Teo, A. G. Uitterlinden, A. Viswanathan, S. Xie, C. Wellcome Trust Case Control, J. R. Vingerling, C. C. Klaver, E. S. Tai, D. Siscovick, R. Klein, M. F. Cotch, T. Y. Wong, J. Attia and J. J. Wang, Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis, PLoS One, 2013, 8, e53830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. T. Sarna, J. M. Burke, W. Korytowski, M. Rozanowska, C. M. Skumatz, A. Zareba and M. Zareba, Loss of melanin from human RPE with aging: possible role of melanin photooxidation, Exp. Eye Res., 2003, 76, 89–98.

    Article  CAS  PubMed  Google Scholar 

  94. S. Ito, A. Pilat, W. Gerwat, C. M. Skumatz, M. Ito, A. Kiyono, A. Zadlo, Y. Nakanishi, L. Kolbe, J. M. Burke, T. Sarna and K. Wakamatsu, Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin, Pigment Cell Melanoma Res., 2013, 26, 357–366.

    Article  CAS  PubMed  Google Scholar 

  95. L. Feeney-Burns, R. P. Burns and C. L. Gao, Age-related macular changes in humans over 90 years old, Am. J. Ophthalmol., 1990, 109, 265–278.

    Article  CAS  PubMed  Google Scholar 

  96. M. Rozanowska and T. Sarna, Light-induced damage to the retina: role of rhodopsin chromophore revisited, Photochem. Photobiol., 2005, 81, 1305–1330.

    Article  CAS  PubMed  Google Scholar 

  97. S. P. Sundelin, S. E. Nilsson and U. T. Brunk, Lipofuscin-formation in cultured retinal pigment epithelial cells is related to their melanin content, Free Radicals Biol. Med., 2001, 30, 74–81.

    Article  CAS  Google Scholar 

  98. Z. Wang, J. Dillon and E. R. Gaillard, Antioxidant properties of melanin in retinal pigment epithelial cells, Photochem. Photobiol., 2006, 82, 474–479.

    Article  CAS  PubMed  Google Scholar 

  99. R. H. Kardon, S. Hong and A. Kawasaki, Entrance pupil size predicts retinal illumination in darkly pigmented eyes, but not lightly pigmented eyes, Invest. Ophthalmol. Vis. Sci., 2013, 54, 5559–5567.

    Article  PubMed  Google Scholar 

  100. V. Daneault, G. Vandewalle, M. Hebert, P. Teikari, L. S. Mure, J. Doyon, C. Gronfier, H. M. Cooper, M. Dumont and J. Carrier, Does pupil constriction under blue and green monochromatic light exposure change with age?, J. Biol. Rhythms, 2012, 27, 257–264.

    Article  PubMed  PubMed Central  Google Scholar 

  101. P. A. Aspinall, S. Borooah, C. Al Alouch, J. Roe, A. Laude, R. Gupta, M. Gupta, A. Montarzino and B. Dhillon, Gaze and pupil changes during navigation in age-related macular degeneration, Br. J. Ophthalmol., 2014, 98, 1393–1397.

    Article  CAS  PubMed  Google Scholar 

  102. B. R. Hammond, B. A. Johnson and E. R. George, Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants, Exp. Eye Res., 2014, 129, 135–150.

    Article  CAS  PubMed  Google Scholar 

  103. D. van Norren and T. G. Gorgels, The action spectrum of photochemical damage to the retina: a review of monochromatic threshold data, Photochem. Photobiol., 2011, 87, 747–753.

    Article  PubMed  CAS  Google Scholar 

  104. J. Wu, S. Seregard and P. V. Algvere, Photochemical damage of the retina, Surv. Ophthalmol., 2006, 51, 461–481.

    Article  PubMed  Google Scholar 

  105. M. Donovan, R. J. Carmody and T. G. Cotter, Light-induced photoreceptor apoptosis in vivo requires neuronal nitric-oxide synthase and guanylate cyclase activity and is caspase-3-independent, J. Biol. Chem., 2001, 276, 23000–23008.

    Article  CAS  PubMed  Google Scholar 

  106. D. T. Organisciak, R. M. Darrow, Y. I. Jiang, G. E. Marak and J. C. Blanks, Protection by dimethylthiourea against retinal light damage in rats, Invest. Ophthalmol. Vis. Sci., 1992, 33, 1599–1609.

    CAS  PubMed  Google Scholar 

  107. S. Gartner and P. Henkind, Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors, Br. J. Ophthalmol., 1981, 65, 23–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. C. A. Curcio, Photoreceptor topography in ageing and age-related maculopathy, Eye, 2001, 15, 376–383.

    Article  CAS  PubMed  Google Scholar 

  109. G. S. Tucker, Refractile bodies in the inner segments of cones in the aging human retina, Invest. Ophthalmol. Vis. Sci., 1986, 27, 708–715.

    CAS  PubMed  Google Scholar 

  110. M. Iwasaki and H. Inomata, Lipofuscin granules in human photoreceptor cells, Invest. Ophthalmol. Vis. Sci., 1988, 29, 671–679.

    CAS  PubMed  Google Scholar 

  111. D. A. DiLoreto Jr., M. R. Martzen, C. del Cerro, P. D. Coleman and M. del Cerro, Muller cell changes precede photoreceptor cell degeneration in the age-related retinal degeneration of the Fischer 344 rat, Brain Res., 1995, 698, 1–14.

    Article  CAS  PubMed  Google Scholar 

  112. S. Ooto, M. Hangai, A. Tomidokoro, H. Saito, M. Araie, T. Otani, S. Kishi, K. Matsushita, N. Maeda, M. Shirakashi, H. Abe, S. Ohkubo, K. Sugiyama, A. Iwase and N. Yoshimura, Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures, Invest. Ophthalmol. Vis. Sci., 2011, 52, 8769–8779.

    Article  PubMed  Google Scholar 

  113. H. Song, T. Y. P. Chui, Z. Zhong, A. E. Elsner and S. A. Burns, Variation of Cone Photoreceptor Packing Density with Retinal Eccentricity and Age, Invest. Ophthalmol. Vis. Sci., 2011, 52, 7376–7384.

    Article  PubMed  PubMed Central  Google Scholar 

  114. T. Y. P. Chui, H. Song, C. A. Clark, J. A. Papay, S. A. Burns and A. E. Elsner, Cone Photoreceptor Packing Density and the Outer Nuclear Layer Thickness in Healthy Subjects, Invest. Ophthalmol. Vis. Sci., 2012, 53, 3545–3553.

    Article  PubMed  PubMed Central  Google Scholar 

  115. S. P. Park, J. K. Chung, V. Greenstein, S. H. Tsang and S. Chang, A study of factors affecting the human cone photoreceptor density measured by adaptive optics scanning laser ophthalmoscope, Exp. Eye Res., 2013, 108, 1–9.

    Article  PubMed  CAS  Google Scholar 

  116. N. Ait-Ali, R. Fridlich, G. Millet-Puel, E. Clerin, F. Delalande, C. Jaillard, F. Blond, L. Perrocheau, S. Reichman, L. C. Byrne, A. Olivier-Bandini, J. Bellalou, E. Moyse, F. Bouillaud, X. Nicol, D. Dalkara, A. van Dorsselaer, J. A. Sahel and T. Leveillard, Rod-derived cone viability factor promotes cone survival by stimulating aerobic glycolysis, Cell, 2015, 161, 817–832.

    Article  CAS  PubMed  Google Scholar 

  117. X. W. Wang, B. Z. Tan, M. Sun, B. Ho and J. L. Ding, Thioredoxin-like 6 protects retinal cell line from photooxidative damage by upregulating NF-kappaB activity, Free Radicals Biol. Med., 2008, 45, 336–344.

    Article  CAS  Google Scholar 

  118. G. Elachouri, I. Lee-Rivera, E. Clerin, M. Argentini, R. Fridlich, F. Blond, V. Ferracane, Y. Yang, W. Raffelsberger, J. Wan, J. Bennett, J. A. Sahel, D. J. Zack and T. Leveillard, Thioredoxin rod-derived cone viability factor protects against photooxidative retinal damage, Free Radicals Biol. Med., 2015, 81, 22–29.

    Article  CAS  Google Scholar 

  119. G. R. Jackson, C. Owsley and C. A. Curcio, Photoreceptor degeneration and dysfunction in aging and age-related maculopathy, Ageing Res. Rev., 2002, 1, 381–396.

    Article  PubMed  Google Scholar 

  120. S. Zayit-Soudry, J. L. Duncan, R. Syed, M. Menghini and A. J. Roorda, Cone structure imaged with adaptive optics scanning laser ophthalmoscopy in eyes with nonneovascular age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2013, 54, 7498–7509.

    Article  PubMed  PubMed Central  Google Scholar 

  121. D. A. VanNasdale, A. E. Elsner, T. D. Peabody, K. D. Kohne, V. E. Malinovsky, B. P. Haggerty, A. Weber, C. A. Clark and S. A. Burns, Henle fiber layer phase retardation changes associated with age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2015, 56, 284–290.

    Article  PubMed Central  Google Scholar 

  122. J. Rogala, B. Zangerl, N. Assaad, E. L. Fletcher, M. Kalloniatis and L. Nivison-Smith, In vivo quantification of retinal changes associated with drusen in age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2015, 56, 1689–1700.

    Article  CAS  PubMed  Google Scholar 

  123. R. Obata and Y. Yanagi, Quantitative analysis of cone photoreceptor distribution and its relationship with axial length, age, and early age-related macular degeneration, PLoS One, 2014, 9, e91873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. V. Torbidoni, M. Iribarne, L. Ogawa, G. Prasanna and A. M. Suburo, Endothelin-1 and endothelin receptors in light-induced retinal degeneration, Exp. Eye Res., 2005, 81, 265–275.

    Article  CAS  PubMed  Google Scholar 

  125. D. T. Organisciak, R. M. Darrow, L. Barsalou, R. A. Darrow, R. K. Kutty, G. Kutty and B. Wiggert, Light history and age-related changes in retinal light damage, Invest. Ophthalmol. Vis. Sci., 1998, 39, 1107–1116.

    CAS  PubMed  Google Scholar 

  126. R. W. Young, The renewal of rod and cone outer segments in the rhesus monkey, J. Cell Biol., 1971, 49, 303–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. D. H. Anderson, S. K. Fisher and R. H. Steinberg, Mammalian cones: disc shedding, phagocytosis, and renewal, Invest. Ophthalmol. Vis. Sci., 1978, 17, 117–133.

    CAS  PubMed  Google Scholar 

  128. R. S. Jonnal, J. R. Besecker, J. C. Derby, O. P. Kocaoglu, B. Cense, W. Gao, Q. Wang and D. T. Miller, Imaging outer segment renewal in living human cone photoreceptors, Opt. Express, 2010, 18, 5257–5270.

    Article  CAS  PubMed  Google Scholar 

  129. J. Y. Kim, H. Zhao, J. Martinez, T. A. Doggett, A. V. Kolesnikov, P. H. Tang, Z. Ablonczy, C. C. Chan, Z. Zhou, D. R. Green and T. A. Ferguson, Noncanonical autophagy promotes the visual cycle, Cell, 2013, 154, 365–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. T. A. Ferguson and D. R. Green, Autophagy and phagocytosis converge for better vision, Autophagy, 2014, 10, 165–167.

    Article  CAS  PubMed  Google Scholar 

  131. V. L. Bonilha, Age and disease-related structural changes in the retinal pigment epithelium, Clin. Ophthalmol., 2008, 2, 413–424.

    Article  PubMed  PubMed Central  Google Scholar 

  132. A. R. Wielgus and J. E. Roberts, Retinal photodamage by endogenous and xenobiotic agents, Photochem. Photobiol., 2012, 88, 1320–1345.

    Article  CAS  PubMed  Google Scholar 

  133. S. Schmitz-Valckenberg, F. G. Holz, A. C. Bird and R. F. Spaide, Fundus autofluorescence imaging: review and perspectives, Retina, 2008, 28, 385–409.

    Article  PubMed  Google Scholar 

  134. T. Ach, C. Huisingh, G. McGwin Jr., J. D. Messinger, T. Zhang, M. J. Bentley, D. B. Gutierrez, Z. Ablonczy, R. T. Smith, K. R. Sloan and C. A. Curcio, Quantitative autofluorescence and cell density maps of the human retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 2014, 55, 4832–4841.

    Article  PubMed  PubMed Central  Google Scholar 

  135. T. Ach, E. Tolstik, J. D. Messinger, A. V. Zarubina, R. Heintzmann and C. A. Curcio, Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2015, 56, 3242–3252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. S. Schmitz-Valckenberg, M. Fleckenstein, H. P. Scholl and F. G. Holz, Fundus autofluorescence and progression of age-related macular degeneration, Surv. Ophthalmol., 2009, 54, 96–117.

    Article  PubMed  Google Scholar 

  137. L. G. Fritsche, M. Fleckenstein, B. S. Fiebig, S. Schmitz-Valckenberg, A. Bindewald-Wittich, C. N. Keilhauer, A. B. Renner, F. Mackensen, A. Mossner, D. Pauleikhoff, C. Adrion, U. Mansmann, H. P. Scholl, F. G. Holz and B. H. Weber, A subgroup of age-related macular degeneration is associated with mono-allelic sequence variants in the ABCA4 gene, Invest. Ophthalmol. Vis. Sci., 2012, 53, 2112–2118.

    Article  PubMed  Google Scholar 

  138. A. Wenzel, C. Grimm, M. Samardzija and C. E. Reme, Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration, Prog. Retin. Eye Res., 2005, 24, 275–306.

    Article  CAS  PubMed  Google Scholar 

  139. D. T. Organisciak and D. K. Vaughan, Retinal light damage: mechanisms and protection, Prog. Retin. Eye Res., 2010, 29, 113–134.

    Article  PubMed  Google Scholar 

  140. M. B. Rozanowska, Light-induced damage to the retina: current understanding of the mechanisms and unresolved questions: a symposium-in-print, Photochem. Photobiol., 2012, 88, 1303–1308.

    Article  CAS  PubMed  Google Scholar 

  141. W. K. Noell, V. S. Walker, B. S. Kang and S. Berman, Retinal damage by light in rats, Invest. Ophthalmol., 1966, 5, 450–473.

    CAS  PubMed  Google Scholar 

  142. W. K. Noell, Possible mechanisms of photoreceptor damage by light in mammalian eyes, Vision Res., 1980, 20, 1163–1171.

    Article  CAS  PubMed  Google Scholar 

  143. W. T. Ham Jr., J. J. Ruffolo Jr., H. A. Mueller, A. M. Clarke and M. E. Moon, Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light, Invest. Ophthalmol. Vis. Sci., 1978, 17, 1029–1035.

    PubMed  Google Scholar 

  144. T. G. Gorgels and D. van Norren, Ultraviolet and green light cause different types of damage in rat retina, Invest. Ophthalmol. Vis. Sci., 1995, 36, 851–863.

    CAS  PubMed  Google Scholar 

  145. C. Grimm, A. Wenzel, T. Williams, P. Rol, F. Hafezi and C. Reme, Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching, Invest. Ophthalmol. Vis. Sci., 2001, 42, 497–505.

    CAS  PubMed  Google Scholar 

  146. Y. Barkana and M. Belkin, Laser eye injuries, Surv. Ophthalmol., 2000, 44, 459–478.

    Article  CAS  PubMed  Google Scholar 

  147. N. Khatib, B. Knyazer, T. Lifshitz and J. Levy, Acute eclipse retinopathy: a small case series, J. Optom., 2014, 7, 225–228.

    Article  PubMed  PubMed Central  Google Scholar 

  148. C. Keller, C. Grimm, A. Wenzel, F. Hafezi and C. Reme, Protective effect of halothane anesthesia on retinal light damage: inhibition of metabolic rhodopsin regeneration, Invest. Ophthalmol. Vis. Sci., 2001, 42, 476–480.

    CAS  PubMed  Google Scholar 

  149. T. Maeda, M. Golczak and A. Maeda, Retinal photodamage mediated by all-trans-retinal, Photochem. Photobiol., 2012, 88, 1309–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. A. Ames 3rd, Y. Y. Li, E. C. Heher and C. R. Kimble, Energy metabolism of rabbit retina as related to function: high cost of Na+ transport, J. Neurosci., 1992, 12, 840–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. P. Bianchini, D. Calzia, S. Ravera, G. Candiano, A. Bachi, A. Morelli, M. Bruschi, I. M. Pepe, A. Diaspro and I. Panfoli, Live imaging of mammalian retina: rod outer segments are stained by conventional mitochondrial dyes, J. Biomed. Opt., 2008, 13, 054017.

    Article  PubMed  CAS  Google Scholar 

  152. I. Panfoli, D. Calzia, M. Bruschi, M. Oneto, P. Bianchini, S. Ravera, A. Petretto, A. Diaspro and G. Candiano, Functional expression of oxidative phosphorylation proteins in the rod outer segment disc, Cell Biochem. Funct., 2013, 31, 532–538.

    Article  CAS  PubMed  Google Scholar 

  153. D. Calzia, G. Garbarino, F. Caicci, L. Manni, S. Candiani, S. Ravera, A. Morelli, C. E. Traverso and I. Panfoli, Functional expression of electron transport chain complexes in mouse rod outer segments, Biochimie, 2014, 102, 78–82.

    Article  CAS  PubMed  Google Scholar 

  154. C. Roehlecke, U. Schumann, M. Ader, C. Brunssen, S. Bramke, H. Morawietz and R. H. Funk, Stress reaction in outer segments of photoreceptors after blue light irradiation, PLoS One, 2013, 8, e71570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Z. Nayernia, V. Jaquet and K. H. Krause, New insights on NOX enzymes in the central nervous system, Antioxid. Redox Signaling, 2014, 20, 2815–2837.

    Article  CAS  Google Scholar 

  156. J. C. Saari, Vitamin A metabolism in rod and cone visual cycles, Annu. Rev. Nutr., 2012, 32, 125–145.

    Article  CAS  PubMed  Google Scholar 

  157. J. S. Wang and V. J. Kefalov, The cone-specific visual cycle, Prog. Retin. Eye Res., 2011, 30, 115–128.

    Article  CAS  PubMed  Google Scholar 

  158. F. Quazi, S. Lenevich and R. S. Molday, ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer, Nat. Commun., 2012, 3, 925.

    Article  PubMed  CAS  Google Scholar 

  159. J. J. Kaylor, Q. Yuan, J. Cook, S. Sarfare, J. Makshanoff, A. Miu, A. Kim, P. Kim, S. Habib, C. N. Roybal, T. Xu, S. Nusinowitz and G. H. Travis, Identification of DES1 as a vitamin A isomerase in Muller glial cells of the retina, Nat. Chem. Biol., 2013, 9, 30–36.

    Article  CAS  PubMed  Google Scholar 

  160. J. J. Kaylor, J. D. Cook, J. Makshanoff, N. Bischoff, J. Yong and G. H. Travis, Identification of the 11-cis-specific retinyl-ester synthase in retinal Muller cells as multifunctional O-acyltransferase (MFAT), Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 7302–7307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Y. Xue, S. Q. Shen, J. Jui, A. C. Rupp, L. C. Byrne, S. Hattar, J. G. Flannery, J. C. Corbo and V. J. Kefalov, CRALBP supports the mammalian retinal visual cycle and cone vision, J. Clin. Invest., 2015, 125, 727–738.

    Article  PubMed  PubMed Central  Google Scholar 

  162. K. Palczewski, G protein-coupled receptor rhodopsin, Annu. Rev. Biochem., 2006, 75, 743–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. S. Nickell, P. S. Park, W. Baumeister and K. Palczewski, Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography, J. Cell Biol., 2007, 177, 917–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. A. Maeda, M. Golczak, Y. Chen, K. Okano, H. Kohno, S. Shiose, K. Ishikawa, W. Harte, G. Palczewska, T. Maeda and K. Palczewski, Primary amines protect against retinal degeneration in mouse models of retinopathies, Nat. Chem. Biol., 2012, 8, 170–178.

    Article  CAS  Google Scholar 

  165. H. Sun and J. Nathans, ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of all-trans-retinal-mediated photooxidative damage in vitro. Implications for retinal disease, J. Biol. Chem., 2001, 276, 11766–11774.

    Article  CAS  PubMed  Google Scholar 

  166. M. Rozanowska, K. Handzel, M. E. Boulton and B. Rozanowski, Cytotoxicity of all-trans-retinal increases upon photodegradation, Photochem. Photobiol., 2012, 88, 1362–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. A. Maeda, G. Palczewska, M. Golczak, H. Kohno, Z. Dong, T. Maeda and K. Palczewski, Two-photon microscopy reveals early rod photoreceptor cell damage in light-exposed mutant mice, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, E1428–E1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Y. Chen, K. Okano, T. Maeda, V. Chauhan, M. Golczak, A. Maeda and K. Palczewski, Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration, J. Biol. Chem., 2012, 287, 5059–5069.

    Article  CAS  PubMed  Google Scholar 

  169. S. Shiose, Y. Chen, K. Okano, S. Roy, H. Kohno, J. Tang, E. Pearlman, T. Maeda, K. Palczewski and A. Maeda, Toll-like receptor 3 is required for development of retinopathy caused by impaired all-trans-retinal clearance in mice, J. Biol. Chem., 2011, 286, 15543–15555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. H. Kohno, Y. Chen, B. M. Kevany, E. Pearlman, M. Miyagi, T. Maeda, K. Palczewski and A. Maeda, Photoreceptor Proteins Initiate Microglial Activation via Toll-like Receptor 4 in Retinal Degeneration Mediated by All-trans-retinal, J. Biol. Chem., 2013, 288, 15326–15341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. M. Y. Loginova, Y. V. Rostovtseva, T. B. Feldman and M. A. Ostrovsky, Light Damaging Action of all-trans-Retinal and Its Derivatives on Rhodopsin Molecules in the Photoreceptor Membrane, Biochemistry, 2007, 73, 130–138.

    Google Scholar 

  172. A. R. Wielgus, C. F. Chignell, P. Ceger and J. E. Roberts, Comparison of A2E cytotoxicity and phototoxicity with all-trans-retinal in human retinal pigment epithelial cells, Photochem. Photobiol., 2010, 86, 781–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. C. Bavik, S. H. Henry, Y. Zhang, K. Mitts, T. McGinn, E. Budzynski, A. Pashko, K. L. Lieu, S. Zhong, B. Blumberg, V. Kuksa, M. Orme, I. Scott, A. Fawzi and R. Kubota, Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity, PLoS One, 2015, 10, e0124940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. J. Zhang, P. D. Kiser, M. Badiee, G. Palczewska, Z. Dong, M. Golczak, G. P. Tochtrop and K. Palczewski, Molecular pharmacodynamics of emixustat in protection against retinal degeneration, J. Clin. Invest., 2015, 125, 2781–2794.

    Article  PubMed  PubMed Central  Google Scholar 

  175. K. P. Ng, B. Gugiu, K. Renganathan, M. W. Davies, X. Gu, J. S. Crabb, S. R. Kim, M. B. Rozanowska, V. L. Bonilha, M. E. Rayborn, R. G. Salomon, J. R. Sparrow, M. E. Boulton, J. G. Hollyfield and J. W. Crabb, Retinal pigment epithelium lipofuscin proteomics, Mol. Cell. Proteomics, 2008, 7, 1397–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. J. R. Sparrow, E. Gregory-Roberts, K. Yamamoto, A. Blonska, S. K. Ghosh, K. Ueda and J. Zhou, The bisretinoids of retinal pigment epithelium, Prog. Retin. Eye Res., 2012, 31, 121–135.

    Article  CAS  PubMed  Google Scholar 

  177. M. E. Boulton, Studying melanin and lipofuscin in RPE cell culture models, Exp. Eye Res., 2014, 126, 61–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. E. Arnault, C. Barrau, C. Nanteau, P. Gondouin, K. Bigot, F. Vienot, E. Gutman, V. Fontaine, T. Villette, D. Cohen-Tannoudji, J. A. Sahel and S. Picaud, Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions, PLoS One, 2013, 8, e71398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Y. Wu, E. Yanase, X. Feng, M. M. Siegel and J. R. Sparrow, Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 7275–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. A. R. Wielgus, R. J. Collier, E. Martin, F. B. Lih, K. B. Tomer, C. F. Chignell and J. E. Roberts, Blue light induced A2E oxidation in rat eyes–experimental animal model of dry AMD, Photochem. Photobiol. Sci., 2010, 9, 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  181. K. D. Yoon, K. Yamamoto, K. Ueda, J. Zhou and J. R. Sparrow, A novel source of methylglyoxal and glyoxal in retina: implications for age-related macular degeneration, PLoS One, 2012, 7, e41309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. J. Zhou, S. R. Kim, B. S. Westlund and J. R. Sparrow, Complement activation by bisretinoid constituents of RPE lipofuscin, Invest. Ophthalmol. Vis. Sci., 2009, 50, 1392–1399.

    Article  PubMed  Google Scholar 

  183. R. A. Radu, J. Hu, Z. Jiang and D. Bok, Bisretinoid-mediated complement activation on retinal pigment epithelial cells is dependent on complement factor H haplotype, J. Biol. Chem., 2014, 289, 9113–9120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. A. C. Grey, R. K. Crouch, Y. Koutalos, K. L. Schey and Z. Ablonczy, Spatial localization of A2E in the retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 2011, 52, 3926–3933.

    Article  PubMed  PubMed Central  Google Scholar 

  185. R. T. Smith, P. S. Bernstein and C. A. Curcio, Rethinking A2E, Invest. Ophthalmol. Vis. Sci., 2013, 54, 5543.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Z. Ablonczy, D. Higbee, D. M. Anderson, M. Dahrouj, A. C. Grey, D. Gutierrez, Y. Koutalos, K. L. Schey, A. Hanneken and R. K. Crouch, Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 2013, 54, 5535–5542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Z. Ablonczy, D. Higbee, A. C. Grey, Y. Koutalos, K. L. Schey and R. K. Crouch, Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium, Arch. Biochem. Biophys., 2013, 539, 196–202.

    Article  CAS  PubMed  Google Scholar 

  188. C. Brandstetter, L. K. Mohr, E. Latz, F. G. Holz and T. U. Krohne, Light induces NLRP3 inflammasome activation in retinal pigment epithelial cells via lipofuscin-mediated photooxidative damage, J. Mol. Med., 2015 DOI. 10.1007/s00109-015-1275–1

    Google Scholar 

  189. R. Allikmets, N. F. Shroyer, N. Singh, J. M. Seddon, R. A. Lewis, P. S. Bernstein, A. Peiffer, N. A. Zabriskie, Y. Li, A. Hutchinson, M. Dean, J. R. Lupski and M. Leppert, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration, Science, 1997, 277, 1805–1807.

    Article  CAS  PubMed  Google Scholar 

  190. R. Allikmets, Further evidence for an association of ABCR alleles with age-related macular degeneration. The International ABCR Screening Consortium, Am. J. Hum. Genet., 2000, 67, 487–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. M. M. Teussink, M. D. Lee, R. T. Smith, R. A. van Huet, C. C. Klaver, B. J. Klevering, T. Theelen and C. B. Hoyng, The effect of light deprivation in patients with Stargardt disease, Am. J. Ophthalmol., 2015, 159, 964–972 e962.

    Article  PubMed  Google Scholar 

  192. L. Wu, K. Ueda, T. Nagasaki and J. R. Sparrow, Light damage in Abca4 and Rpe65rd12 mice, Invest. Ophthalmol. Vis. Sci., 2014, 55, 1910–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. R. A. Radu, J. Hu, Q. Yuan, D. L. Welch, J. Makshanoff, M. Lloyd, S. McMullen, G. H. Travis and D. Bok, Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration, J. Biol. Chem., 2011, 286, 18593–18601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. J. E. Berchuck, P. Yang, B. A. Toimil, Z. Ma, P. Baciu and G. J. Jaffe, All-trans-retinal sensitizes human RPE cells to alternative complement pathway-induced cell death, Invest. Ophthalmol. Vis. Sci., 2013, 54, 2669–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. A. Liu, J. Chang, Y. Lin, Z. Shen and P. S. Bernstein, Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration, J. Lipid Res., 2010, 51, 3217–3229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. D. T. Organisciak, R. M. Darrow, Y. L. Jiang and J. C. Blanks, Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate, Invest. Ophthalmol. Vis. Sci., 1996, 37, 2243–2257.

    CAS  PubMed  Google Scholar 

  197. R. A. Bush, C. E. Reme and A. Malnoe, Light damage in the rat retina: the effect of dietary deprivation of N-3 fatty acids on acute structural alterations, Exp. Eye Res., 1991, 53, 741–752.

    Article  CAS  PubMed  Google Scholar 

  198. F. Quazi and R. S. Molday, ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 5024–5029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. P. K. Mukherjee, V. L. Marcheselli, J. C. de Rivero Vaccari, W. C. Gordon, F. E. Jackson and N. G. Bazan, Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 13158–13163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. D. L. Birkle and N. G. Bazan, Light exposure stimulates arachidonic acid metabolism in intact rat retina and isolated rod outer segments, Neurochem. Res., 1989, 14, 185–190.

    Article  CAS  PubMed  Google Scholar 

  201. M. De La Paz and R. E. Anderson, Region and age-dependent variation in susceptibility of the human retina to lipid peroxidation, Invest. Ophthalmol. Vis. Sci., 1992, 33, 3497–3499.

    Google Scholar 

  202. M. Suzuki, M. Kamei, H. Itabe, K. Yoneda, H. Bando, N. Kume and Y. Tano, Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration, Mol. Vis., 2007, 13, 772–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. M. Suzuki, M. Tsujikawa, H. Itabe, Z. J. Du, P. Xie, N. Matsumura, X. Fu, R. Zhang, K. H. Sonoda, K. Egashira, S. L. Hazen and M. Kamei, Chronic photo-oxidative stress and subsequent MCP-1 activation as causative factors for age-related macular degeneration, J. Cell Sci., 2012, 125, 2407–2415.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. J. W. Crabb, M. Miyagi, X. Gu, K. Shadrach, K. A. West, H. Sakaguchi, M. Kamei, A. Hasan, L. Yan, M. E. Rayborn, R. G. Salomon and J. G. Hollyfield, Drusen proteome analysis: an approach to the etiology of age-related macular degeneration, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 14682–14687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. F. Schutt, M. Bergmann, F. G. Holz and J. Kopitz, Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium, Invest. Ophthalmol. Vis. Sci., 2003, 44, 3663–3668.

    Article  PubMed  Google Scholar 

  206. D. T. Organisciak, R. M. Darrow, C. M. Rapp, J. P. Smuts, D. W. Armstrong and J. C. Lang, Prevention of retinal light damage by zinc oxide combined with rosemary extract, Mol. Vis., 2013, 19, 1433–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. J. G. Hollyfield, V. L. Perez and R. G. Salomon, A Hapten Generated from an Oxidation Fragment of Docosahexaenoic Acid Is Sufficient to Initiate Age-Related Macular Degeneration, Mol. Neurobiol., 2010, 41, 290–298.

    Article  CAS  PubMed  Google Scholar 

  208. R. G. Salomon, Distinguishing levuglandins produced through the cyclooxygenase and isoprostane pathways, Chem. Phys. Lipids, 2005, 134, 1–20.

    Article  CAS  PubMed  Google Scholar 

  209. E. Poliakov, M. L. Brennan, J. Macpherson, R. Zhang, W. Sha, L. Narine, R. G. Salomon and S. L. Hazen, Isolevuglandins, a novel class of isoprostenoid derivatives, function as integrated sensors of oxidant stress and are generated by myeloperoxidase in vivo, FASEB J., 2003, 17, 2209–2220.

    Article  CAS  PubMed  Google Scholar 

  210. W. Li, J. M. Laird, L. Lu, S. Roychowdhury, L. E. Nagy, R. Zhou, J. W. Crabb and R. G. Salomon, Isolevuglandins covalently modify phosphatidylethanolamines in vivo: detection and quantitative analysis of hydroxylactam adducts, Free Radicals Biol. Med., 2009, 47, 1539–1552.

    Article  CAS  Google Scholar 

  211. C. Charvet, W. L. Liao, G. Y. Heo, J. Laird, R. G. Salomon, I. V. Turko and I. A. Pikuleva, Isolevuglandins and mitochondrial enzymes in the retina: mass spectrometry detection of post-translational modification of sterol-metabolizing CYP27A1, J. Biol. Chem., 2011, 286, 20413–20422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. C. D. Charvet, A. Saadane, M. Wang, R. G. Salomon, H. Brunengraber, I. V. Turko and I. A. Pikuleva, Pretreatment with pyridoxamine mitigates isolevuglandin-associated retinal effects in mice exposed to bright light, J. Biol. Chem., 2013, 288, 29267–29280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Suburo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marquioni-Ramella, M.D., Suburo, A.M. Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 14, 1560–1577 (2015). https://doi.org/10.1039/c5pp00188a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c5pp00188a

Navigation