Issue 21, 2015

The reconstructed edges of the hexagonal BN

Abstract

As an important two-dimensional material which shows exceptional mechanical and chemical stability, superior electronic properties, along with broad applications, the hexagonal-BN (h-BN) has drawn great attention recently. Here we report a systematic study on the structural stability, electronic and magnetic properties of various h-BN edges, including both bare and hydrogen-terminated ones. It is found that along the armchair (AC) direction, the pristine edge is the most stable one because of the formation of a triple B[triple bond, length as m-dash]N bond, while, along the zigzag (ZZ) directions, the reconstructed ones, ZZB + N and ZZN57 are more stable. The pristine edges are more stable in bare BN in most cases if saturated with hydrogen. By applying the theory of Wulff construction, we predicted that an unpassivated BN domain prefers the hexagonal shape enclosed with bare AC edges i.e., AC-Ns, AC, AC-Bs if the feedstock varies from N-rich to B-rich. However, the evolution from ZZN edged triangular domain, to hexagonal domain enclosed with AC edges, and ZZB edged triangle may occur if the edges are terminated by hydrogen atoms. Further calculation shows that these edges present rich type-dependent properties and thus are important for various applications. This theoretical study showed that controlling the morphologies of BN domains and BN edges is crucial for various applications.

Graphical abstract: The reconstructed edges of the hexagonal BN

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2015
Accepted
22 Apr 2015
First published
27 Apr 2015

Nanoscale, 2015,7, 9723-9730

The reconstructed edges of the hexagonal BN

R. Zhao, J. Gao, Z. Liu and F. Ding, Nanoscale, 2015, 7, 9723 DOI: 10.1039/C5NR02143J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements