Issue 7, 2015

Templated microstructural growth of perovskite thin films via colloidal monolayer lithography

Abstract

Organic–inorganic metal halide perovskites have led to remarkable advancements in emerging photovoltaics with power conversion efficiencies (PCEs) already achieving 20%. In addition to solar cells, these perovskites also show applicability for lasing and LED applications. Here, we control perovskite crystal domain size and microstructure by guiding the growth through a highly ordered metal oxide honeycomb structure, which we form via colloidal monolayer lithography. The organic–inorganic perovskite material fills the holes of the honeycomb remarkably well leading to fully controlled domain size with tuneable film thickness. The honeycomb region is predominantly transparent, whereas the perovskite crystals within the honeycomb are strongly absorbing. We fabricate semi-transparent perovskite solar cells to demonstrate the feasibility of this structuring, which leads to enhanced open-circuit voltage and fill factor in comparison to unstructured partially dewet perovskite thin films. We achieve power conversion efficiencies of up to 9.5% with an average visible transmittance through the active layer of around 37%. The controlled microscopic morphology of perovskite films opens up a wide range of possible investigations, from charge transport optimization to optical enhancements and photonic structuring for photovoltaic, light emitting and lasing devices.

Graphical abstract: Templated microstructural growth of perovskite thin films via colloidal monolayer lithography

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2015
Accepted
14 May 2015
First published
28 May 2015

Energy Environ. Sci., 2015,8, 2041-2047

Templated microstructural growth of perovskite thin films via colloidal monolayer lithography

M. T. Hörantner, W. Zhang, M. Saliba, K. Wojciechowski and H. J. Snaith, Energy Environ. Sci., 2015, 8, 2041 DOI: 10.1039/C5EE01169H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements