Skip to main content
Log in

Excited state proton transfer of 2-(2′-hydroxyphenyl)benzimidazole and its nitrogen substituted analogues in bovine serum albumin

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The interaction of 2-(2′-hydroxyphenyl)benzimidazole (HPBI) and its nitrogen substituted analogues 2-(2′-hydroxyphenyl)-3H-imidazo[4,5-b]pyridine (HPIP-b) and 2-(2′-hydroxyphenyl)-1H-imidazo-[4,5-c]pyridine (HPIP-c) with BSA was explored. Upon interaction with BSA both normal and tautomer emissions are significantly enhanced. However, the fluorescence ratios of the normal band to the tautomer band of HPBI and HPIP-b decrease, but that of HPIP-c increases. From the tautomer emission, the stoichiometry and association constants were determined. HPBI exists as cis- and trans-enolic and zwitterionic forms, whereas HPIP-b and HPIP-c are present as monoanions in addition to cis- and trans-enols. The study shows that different conformers of all three molecules bind at different binding sites of BSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Waheed, K. S. Rao and P. D. Gupta, Mechanism of dye binding in the protein assay using eosin dyes, Anal. Biochem., 2000, 287, 73–79.

    Article  CAS  PubMed  Google Scholar 

  2. X. M. He and D. C. Carter, Atomic-structure and chemistry of human serum-albumin, Nature, 1992, 358, 209–215.

    Article  CAS  PubMed  Google Scholar 

  3. U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin, Pharmacol. Rev., 1981, 33, 17–53.

    CAS  PubMed  Google Scholar 

  4. F. Karush, Heterogeneity of the binding sites of bovine serum albumin, J. Am. Chem. Soc., 1950, 72, 2705–2713.

    Article  CAS  Google Scholar 

  5. P. Bourassa, C. D. Kanakis, P. Tarantilis, M. G. Pollissiou and H. A. Tajmir-Riahi, Resveratrol, genistein, and curcumin bind bovine serum albumin, J. Phys. Chem. B, 2010, 114, 3348–3354.

    Article  CAS  PubMed  Google Scholar 

  6. F.-L. Cui, J. Fan, J.-P. Lib, Z.-D. Hua, Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy, Bioorg. Med. Chem., 2004, 12, 151–157.

    Article  CAS  PubMed  Google Scholar 

  7. V. S. Jisha, K. T. Arun, M. Hariharan and D. Ramaiah, Site-selective binding and dual mode recognition of serum albumin by a squaraine dye, J. Am. Chem. Soc., 2006, 128, 6024–6025.

    Article  CAS  PubMed  Google Scholar 

  8. G. Sudlow, D. J. Birkett and D. N. Wade, Futher characterization of specifc drug binding-sites on human-serum albumin, Mol. Pharmacol., 1976, 12, 1052–1061.

    CAS  PubMed  Google Scholar 

  9. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn, 2006.

    Book  Google Scholar 

  10. A. J. Ozinskas, Principles of Fluorescence Immunoassay, in Topics in Fluorescence Spectroscopy, Volume 4–Probe Design and Chemical Sensing, ed. J. R. Lakowicz, Plenum Press, New York and London, 1994, vol. 4 pp. 449–496.

    Article  CAS  Google Scholar 

  11. H. Dodiuk, H. Kanety and E. M. Kosower, The apomyoglobin-a rylaminonaphthalenesulfonate system. Insight into fluorescent probe responses by substituent modulation, J. Phys. Chem., 1979, 83, 515–521.

    Article  CAS  Google Scholar 

  12. B. K. Paul, A. Samanta and N. Guchhait, Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded States by a small fluorescence molecular reporter, J. Phys. Chem. B, 2010, 114, 6183–6196.

    Article  CAS  PubMed  Google Scholar 

  13. B. K. Paul, D. Ray and N. Guchhait, Spectral deciphering of the interaction between intramolecular hydrogen bonded ESIPT drug, 3, 5-dichlorosalicylic acid, and a model transport protein, Phys. Chem. Chem. Phys., 2012, 14, 8892–8902.

    Article  CAS  PubMed  Google Scholar 

  14. L. Fabrizzi and A. Poggi, Sensors and switches from supramolecular chemistry, Chem. Soc. Rev., 1995, 24, 197–202.

    Article  Google Scholar 

  15. B. Bhattacharya, S. Nakka, L. Guruprasad and A. Samanta, Interaction of bovine serum albumin with dipolar molecules: fluorescence and molecular docking Studies, J. Phys. Chem. B, 2009, 113, 2143–2150.

    Article  CAS  PubMed  Google Scholar 

  16. P. T. Chou, W. C. Cooper and J. H. Clements, A comparative study. The photophysics of 2-phenylbenzoxazoles and 2-phenylbenzothiazoles, Chem. Phys. Lett., 1993, 216, 300–304.

    Article  CAS  Google Scholar 

  17. B. K. Paul and N. Guchhait, Modulation of prototropic activity and rotational relaxation dynamics of a cationic biological photosensitizer within the motionally constrained bio-environment of a protein, J. Phys. Chem. B, 2011, 115, 10322–10334.

    Article  CAS  PubMed  Google Scholar 

  18. M. R. Loken, J. W. Mayer, J. Gohlke and C. Brand, Excited-state proton transfer as a biological probe, Determination of rate constants by means of nanosecond fluorometry, Biochemistry, 1972, 11, 4779–4786.

    Article  CAS  PubMed  Google Scholar 

  19. S. J. Formosinho and L. G. Arnaut, Excited- state proton-transfer reaction. 2. Intramolecular reactions, J. Photochem. Photobiol., A, 1993, 75, 21–48.

    Article  CAS  Google Scholar 

  20. J. E. Kwon and S. Y. Park, Advanced organic optoelectronic materials: Harnessing excited-state intramolecular proton transfer (ESIPT) process, Adv. Mater., 2011, 23, 3615–3642.

    Article  CAS  PubMed  Google Scholar 

  21. J. Zhao, S. Ji, Y. Chen, H. Guo and P. Yang, Excited state intramolecular proton transfer (ESIPT): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials, Phys. Chem. Chem. Phys., 2012, 14, 8803–8817.

    Article  CAS  PubMed  Google Scholar 

  22. F. A. S. Chipem, A. Mishra and G. Krishnamoorthy, The role of hydrogen bonding in excited state intramolecular charge transfer, Phys. Chem. Chem. Phys., 2012, 14, 8775–8790.

    Article  CAS  PubMed  Google Scholar 

  23. J. Seo, S. Kim and S. Y. Park, Strong solvatochromic fluorescence from the Intramolecular charge-transfer state created by excited-state intramolecular proton transfer, J. Am. Chem. Soc., 2004, 126, 11154–11155.

    Article  CAS  PubMed  Google Scholar 

  24. Z. C. Wen, J. A. B. Ferreira, S. M. B. Costa, Novel pH tunable fluorescent sensor with dual recognition mode, J. Photochem. Photobiol., A, 2008, 199, 98–104.

    Article  CAS  Google Scholar 

  25. Q. Chou, D. A. Medvetz and Y. Pang, A polymeric colorimetric sensor with excited-state intramolecular proton transfer for anionic species, Chem. Mater., 2007, 19, 6421–6429.

    Article  CAS  Google Scholar 

  26. M. Taki, J. L. Wolford, T. V. O’Halloran, Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy, J. Am. Chem. Soc., 2004, 126, 712–713.

    Article  CAS  PubMed  Google Scholar 

  27. S. K. Das, A. Bansal and S. K. Dogra, Excited state intramolecular proton transfer reactions in 2-(2-hydroxyphenyl)benzimidazole in micellar solutions, Bull. Chem. Soc. Jpn., 1997, 70, 307–313.

    Article  CAS  Google Scholar 

  28. A. L. Sobolewski, W. Domcke, C. Hättig, Photophysics of organic photostabilizers. Ab initio study of the excited-state deactivation mechanisms of 2-(2′-hydroxyphenyl)benzotriazole, J. Phys. Chem. A, 2006, 110, 6301–6306.

    Article  CAS  PubMed  Google Scholar 

  29. F. A. S. Chipem, S. K. Behera and G. Krishnamoorthy, Enhancing excited state intramolecular proton transfer in 2-(2′-hydroxyphenyl)benzimidazole and its nitrogen-substituted analogues by ß-cyclodextrin: The effect of nitrogen substitution, J. Phys. Chem. A, 2013, 117, 4084–4095.

    Article  CAS  PubMed  Google Scholar 

  30. N. Singh, N. Kaur, R. C. Mulrooney and J. F. Callan, A ratiometric fluorescent probe for magnesium employing excited state intramolecular proton transfer, Tetrahedron Lett., 2008, 49, 6690–6692.

    Article  CAS  Google Scholar 

  31. C. Hou, Y. Xiong, N. Fu, C. C. Jacquot, T. C. Squier and H. Cao, Turn-on ratiometric fluorescent sensor for Pb2+ detection, Tetrahedron Lett., 2011, 52, 2692–2696.

    Article  CAS  Google Scholar 

  32. R. Hu, J. Feng, D. Hu, S. Wang, S. Li, Y. Li and G. Yang, A rapid aqueous fluoride ion sensor with dual output modes, Angew. Chem., Int. Ed., 2010, 49, 4915–4918.

    Article  CAS  Google Scholar 

  33. S. Banthia and A. Samanta, A new strategy for ratiometric fluorescence detection of transition metal ions, J. Phys. Chem. B, 2006, 110, 6437–6440.

    Article  CAS  PubMed  Google Scholar 

  34. A. S. Klymchenko and A. P. Demchenko, Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer, Phys. Chem. Chem. Phys., 2003, 5, 461–468.

    Article  CAS  Google Scholar 

  35. F. A. S. Chipem, S. K. Behera and G. Krishnamoorthy, Ratiometric fluorescence sensing ability of 2-(2′-hydroxyphenyl)benzimidazole and its nitrogen substituted analogues towards metal ions, Sens. Actuators, B, 2014, 191, 727–733.

    Article  CAS  Google Scholar 

  36. F. S. Rodembusch, F. P. Leusin, L. F. D. Medina, A. Brandelli and V. Stefani, Synthesis and spectroscopic characterisation of new ESIPT fluorescent protein probes, Photochem. Photobiol. Sci., 2005, 4, 254–259.

    Article  CAS  PubMed  Google Scholar 

  37. D. Ray, B. K. Paul and N. Guchhait, Effect of biological confinement on the photophysics and dynamics of a proton-transfer phototautomer: an exploration of excitation and emission wavelength-dependent photophysics of the protein-bound drug, Phys. Chem. Chem. Phys., 2012, 14, 12182–12192.

    Article  CAS  PubMed  Google Scholar 

  38. B. K. Paul, D. Ray and N. Guchhait, Spectral deciphering of the interaction between an intramolecular hydrogen bonded ESIPT drug, 3,5-dichlorosalicylic acid, and a model transport protein, Phys. Chem. Chem. Phys., 2012, 14, 8892–8902.

    Article  CAS  PubMed  Google Scholar 

  39. M. G. Holler, L. F. Campo, A. Brandelli and V. Stefani, Synthesis and spectroscopic characterisation of 2-(2′-hydroxyphenyl)benzazole isothiocyanates as new fluorescent probes for proteins, J. Photochem. Photobiol., A, 2002, 149, 217–225.

    Article  CAS  Google Scholar 

  40. H. K. Sinha and S. K. Dogra, Ground and excited state prototropic reactions in 2-(ortho-hyroxyphenyl)benzimidazole, Chem. Phys., 1986, 102, 337–347.

    Article  CAS  Google Scholar 

  41. G. Krishnamoorthy and S. K. Dogra, Prototropic reactions of 2(2′-hydroxyphenyl)-3H-imidazo[4,5-b]pyridine in aqueous and organic solvents, J. Lumin., 2000, 92, 103–114.

    Article  CAS  Google Scholar 

  42. G. Krishnamoorthy and S. K. Dogra, Excited state intramolecular proton transfer in 2-(2′-hydroxyphenyl)-3H-imidazo[4,5-b]pyridine: effect of solvents, J. Lumin., 2000, 92, 91–102.

    Article  CAS  Google Scholar 

  43. M. M. Balamurali and S. K. Dogra, Excited state intramolecular proton transfer in 2-(2′-hydroxyphenyl)-1H-imidazo[4,5-c]pyridine: Effects of solvents, J. Photochem. Photobiol., A, 2002, 154, 81–92.

    Article  CAS  Google Scholar 

  44. F. A. S. Chipem and G. Krishnamoorthy, Comparative theoretical study of rotamerism and excited state intramolecular proton transfer of 2-(2′-hydroxyphenyl)benzimidazole, 2-(2′-hydroxyphenyl)imidazo[4,5-b]pyridine, 2-(2′-hydroxyphenyl)imidazo[4,5-c] pyridine and 8-(2′-hydroxyphenyl)purine, J. Phys. Chem. A, 2009, 113, 12063–12070.

    Article  CAS  PubMed  Google Scholar 

  45. M. Mosquera, M. C. R. Rodríguez, F. Rodríguez-Prieto, Competition between protonation and deprotonation in the first excited singlet state of 2-(3′-hydroxy-2′-pyridyl)benzimidazole in acidic solutions, J. Phys. Chem. A, 1997, 101, 2766–2772.

    Article  CAS  Google Scholar 

  46. M. C. R. Rodríguez, M. Mosquera, F. Rodríguez-Prieto, Ground- and excited-state tautomerism in anionic 2-(6′-hydroxy-2′-pyridyl)benzimidazole: Role of solvent and temperature, J. Phys. Chem. A, 2001, 105, 10249–10260.

    Article  CAS  Google Scholar 

  47. F. A. S. Chipem, N. Dash and G. Krishnamoorthy, Role of nitrogen substitution in phenyl ring on excited state intramolecular proton transfer and rotamerism of 2-(2′-hydroxyphenyl)benzimidazole: A theoretical study, J. Chem. Phys., 2011, 134, 104308.

    Article  PubMed  CAS  Google Scholar 

  48. D. LeGourriérec, V. Kharlanov, R. G. Brown and W. Rettig, Excited-state intramolecular proton transfer (ESIPT) in 2-(2′-hydroxyphenyl)-oxazole and–thiazole, J. Photochem. Photobiol., A, 2000, 130, 101–111.

    Article  Google Scholar 

  49. S. R. Vázquez, C. R. Rodríguez, M. Mosquera, F. Rodríguez-Prieto, Excited-state intramolecular proton transfer in 2-(3′-hydroxy-2′-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles, J. Phys. Chem. A, 2007, 111, 1814–1826.

    Article  PubMed  CAS  Google Scholar 

  50. V. A. Kharlanov, W. Rettig, M. I. Knyazhansky and N. Makaraova, Multiple emission of N-(1-anthryl)-pyridinium, J. Photochem. Photobiol., A, 1997, 103, 45–50.

    Article  CAS  Google Scholar 

  51. F. A. S. Chipem and G. Krishnamoorthy, Temperature effect on dual fluorescence of 2-(2′-Hydroxyphenyl)benzimidazole and its nitrogen substituted analogues, J. Phys. Chem. B, 2013, 117, 14079–14088.

    Article  CAS  PubMed  Google Scholar 

  52. A. Brenlla, M. Veiga, M. C. R. Rodríguez, M. Mosquera, F. Rodríguez-Prieto, Fluorescence of methylated derivatives of hydroxyphenylimidazopyridine. Resolution of strongly overlapping spectra and a new ESIPT dye showing very efficient radiationless deactivation, Photochem. Photobiol. Sci., 2011, 10, 1622–1636.

    Article  CAS  PubMed  Google Scholar 

  53. H. Konoshima, S. Nagao, I. Kiyota, K. Amimoto, N. Yamamoto, M. Sekine, M. Nakata, K. Furukawa and H. Sekiya, Excited-state intramolecular proton transfer and charge transfer in 2-(2′-hydroxyphenyl)benzimidazole crystals studied by polymorphs-selected electronic spectroscopy, Phys. Chem. Chem. Phys., 2012, 14, 16448–16457.

    Article  CAS  PubMed  Google Scholar 

  54. E. L. Roberts, J. Dey and I. M. Warner, Excited-state intramolecular proton transfer of 2-(2′-hydroxyphenyl)benzimidazole in cyclodextrins and binary solvent mixtures, J. Phys. Chem. A, 1997, 101, 5296–5301.

    Article  CAS  Google Scholar 

  55. F. Bosca, Seeking to shed some light on the binding of fluoroquinolones to albumins, J. Phys. Chem. B, 2012, 116, 3504–3511.

    Article  CAS  PubMed  Google Scholar 

  56. M. L. Benesi and J. H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703–2707.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krishnamoorthy.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00099d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipem, F.A.S., Behera, S.K. & Krishnamoorthy, G. Excited state proton transfer of 2-(2′-hydroxyphenyl)benzimidazole and its nitrogen substituted analogues in bovine serum albumin. Photochem Photobiol Sci 13, 1297–1304 (2014). https://doi.org/10.1039/c4pp00099d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00099d

Navigation