Skip to main content
Log in

The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

It is known that Photodynamic Therapy (PDT) induces changes in the cytoskeleton, the cell shape, and the adhesion properties of tumour cells. In addition, these targets have also been demonstrated to be involved in the development of PDT resistance. The reversal of PDT resistance by manipulating the cell adhesion process to substrata has been out of reach. Even though the existence of cell adhesion-mediated PDT resistance has not been reported so far, it cannot be ruled out. In addition to its impact on the apoptotic response to photodamage, the cytoskeleton alterations are thought to be associated with the processes of metastasis and invasion after PDT. In this review, we will address the impact of photodamage on the microfilament and microtubule cytoskeleton components and its regulators on PDT-treated cells as well as on cell adhesion. We will also summarise the impact of PDT on the surviving and resistant cells and their metastatic potential. Possible strategies aimed at taking advantage of the changes induced by PDT on actin, tubulin and cell adhesion proteins by targeting these molecules will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

BPD:

Benzoporphyrin Derivative

BPD-MA:

Benzoporphyrin monoacid ring A

CAM:

Cell adhesion molecules

CAM-DR:

Cell adhesion-mediated drug resistance

CAM-RR:

Cell adhesion-mediated radioresistance

ECM:

Extracellular matrix

EGFR:

Epidermal growth factor receptor

FAK:

Focal adhesion kinase

PDT:

Photodynamic therapy

ZnPc:

Zinc(ii)-phthalocyanine

Notes and references

  1. A. Casas, G. Di Venosa, T. Hasan, A. Batlle, Mechanisms of resistance to photodynamic therapy, Curr. Med. Chem., 2011, 1816, 2486–2515. Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T. Liu, L. Y. Wu, C. E. Berkman, Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption, Cancer Lett., 2010, 2961, 106–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Cañete, M. Lapeña, A. Juarranz, V. Vendrell, J. I. Borrell, J. Teixidó, S. Nonell, A. Villanueva, Uptake of tetraphenylporphycene and its photoeffects on actin and cytokeratin elements of HeLa cells, Anti-Cancer Drug Des., 1997, 127, 543–554.

    Google Scholar 

  4. P. Acedo, J. C. Stockert, M. Cañete, A. Villanueva, Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer, Cell Death Dis., 2014, 135, e1122.

    Article  CAS  Google Scholar 

  5. A. Uzdensky, E. Kolpakova, A. Juzeniene, P. Juzenas, J. Moan, The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells, Biochim. Biophys. Acta, 2005, 17221, 43–50.

    Article  CAS  PubMed  Google Scholar 

  6. B. Chen, B. W. Pogue, J. M. Luna, R. L. Hardman, P. J. Hoopes, T. Hasan, Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications, Clin. Cancer Res., 2006, 123 Pt 1, 917–923.

    Article  CAS  PubMed  Google Scholar 

  7. A. Casas, F. Sanz-Rodriguez, G. Di Venosa, L. Rodriguez, L. Mamone, A. Blázquez, P. Jén, J. C. Stockert, A. Juarranz, Disorganization of cytoskeleton in cells resistant to photodynamic treatment with decresed metastatic phenotype, Cancer Lett., 2008, 2701, 56–65.

    Article  CAS  PubMed  Google Scholar 

  8. G. Di Venosa, L. Rodriguez, L. Mamone, L. Gándara, M. V. Rossetti, A. Batlle, A. Casas, Changes in actin and E-cadherin expression induced by 5-aminolevulinic acid photodynamic therapy in normal and Ras-transfected human mammary cell lines, J. Photochem. Photobiol., B, 2012, 106, 47–52.

    Article  CAS  Google Scholar 

  9. A. Juarranz, J. Espada, J. C. Stockert, A. Villanueva, S. Polo, V. Domínguez, M. Cañete, Photodamage induced by Zinc(II)-phthalocyanine to microtubules, actin, alpha-actinin and keratin of HeLa cells, Photochem. Photobiol., 2001, 733, 283–289.

    Article  CAS  PubMed  Google Scholar 

  10. K. Berg, J. Moan, Mitotic inhibition by phenylporphines and tetrasulfonated aluminum phthalocyanine in combination with light, Photochem. Photobiol., 1992, 56, 333–339.

    Article  CAS  PubMed  Google Scholar 

  11. K. Berg, The unpolymerized form of tubulin is the target for microtubule inhibition by photoactivated tetra(4-sulfonatopheny1) porphine, Biochim. Biophys. Acta, 1992, 1135, 147–153.

    Article  CAS  PubMed  Google Scholar 

  12. C. Lee, S. S. Wu, L. B. Chen, Photosensitization by 3,3′-dihexyloxacarbocyanine iodide: specific disruption of microtubules and inactivation of organelle motility, Cancer Res., 1995, 5510, 2063–2069.

    CAS  PubMed  Google Scholar 

  13. I. Ringel, V. Gottfried, L. Levdansky, J. W. Winkelman and S. Kimel, Photodynamic activity of porphyrins on tubulin assembly, in Phorochemorherapy: Photodynamic Therapy and Other Modalities, ed. B. Ehrenberg, G. Jon and J. Moan, PROC SPIE, 1996, vol. 2625, pp. 156–163.

    Chapter  Google Scholar 

  14. E. Panzarini, B. Tenuzzo, L. Dini, Photodynamic therapy-induced apoptosis of HeLa cells, Ann. N. Y. Acad. Sci., 2009, 1171, 617–626.

    Article  CAS  PubMed  Google Scholar 

  15. L. N. Milla, I. S. Cogno, M. E. Rodríguez, F. Sanz-Rodríguez, A. Zamarrón, Y. Gilaberte, E. Carrasco, V. A. Rivarola, A. Juarranz, Isolation and characterization of squamous carcinoma cells resistant to photodynamic therapy, J. Cell. Biochem., 2011, 1129, 2266–2278.

    Article  CAS  PubMed  Google Scholar 

  16. G. Calvo, D. Saenz, A. Casas, M. Simian, R. Sampayo, L. Mamone, P. Vallecorsa, A. Batlle, G. Di Venosa, Alteraciones en la adhesión y migración de células tumorales sometidas a la terapia fotodinámica empleando fotosensibilizantes de uso clínico, Medicina, 2013, 73III, 183–184.

    Google Scholar 

  17. C. W. Gourlay, K. R. Ayscough, The actin cytoskeleton: a key regulator of apoptosis and ageing?, Nat. Rev. Mol. Cell Biol., 2005, 67, 583–589.

    Article  CAS  PubMed  Google Scholar 

  18. O. Ndozangue-Touriguine, J. Hamelin, J. Bréard, Cytoskeleton and apoptosis, Biochem. Pharmacol., 2008, 761, 11–18.

    Article  CAS  PubMed  Google Scholar 

  19. L. G. Bastos, P. G. de Marcondes, J. C. de-Freitas-Junior, F. Leve, A. L. Mencalha, W. F. de Souza, W. M. de Araujo, M. N. Tanaka, E. S. Abdelhay, J. A. Morgado-Díaz, Progeny From Irradiated Colorectal Cancer Cells Acquire an EMT-Like Phenotype and Activate Wnt/β-Catenin Pathway, J. Cell. Biochem., 2014, 11512, 2175–2187.

    Article  CAS  PubMed  Google Scholar 

  20. W. C. Leung, M. J. Hour, W. T. Chang, Y. C. Wu, M. Y. Lai, M. Y. Wang, H. Z. Lee, P38-associated pathway involvement in apoptosis induced by photodynamic therapy with Lonicera japonica in human lung squamous carcinoma CH27 cells, Food Chem. Toxicol., 2008, 46, 3389–3400.

    Article  CAS  PubMed  Google Scholar 

  21. C. Soldani, A. C. Croce, M. G. Bottone, A. Fraschini, M. Biggiogera, G. Bottiroli, C. Pellicciari, Apoptosis in tumour cells photosensitized with Rose Bengal acetate is induced by multiple organelle photodamage, Histochem. Cell Biol., 2007, 128, 485–495.

    Article  CAS  PubMed  Google Scholar 

  22. R. Ruiz-González, P. Acedo, D. Sánchez-García, S. Nonell, M. Cañete, J. C. Stockert, A. Villanueva, Efficient induction of apoptosis in HeLa cells by a novel cationic porphycene photosensitizer, Eur. J. Med. Chem., 2013, 63, 401–414.

    Article  PubMed  CAS  Google Scholar 

  23. N. Etminan, C. Peters, J. Ficnar, S. Anlasik, E. Bünemann, P. J. Slotty, D. Hänggi, H. J. Steiger, R. V. Sorg, W. Stummer, Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid–based photodynamic treatment, Laboratory investigation, J. Neurosurg., 2011, 1152, 281–288.

    Article  CAS  PubMed  Google Scholar 

  24. J. Cai, S. Chen, W. Zhang, Y. Wei, J. Lu, J. Xing, Y. Dong, Proteomic analysis of differentially expressed proteins in 5-fluorouracil-treated human breast cancer MCF-7 cells, Clin. Transl. Oncol., 2014, 167, 650–659.

    Article  CAS  PubMed  Google Scholar 

  25. C. M. Fife, J. A. McCarroll, M. Kavallaris, Movers and shakers: cell cytoskeleton in cancer metastasis, Br. J. Pharmacol., 2014, 17124, 5507–5523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Vassilopoulos, C. Xiao, C. Chisholm, W. Chen, X. Xu, T. J. Lahusen, C. Bewley, C. X. Deng, Synergistic therapeutic effect of cisplatin and phosphatidylinositol 3-kinase (PI3 K) inhibitors in cancer growth and metastasis of Brca1 mutant tumors, J. Biol. Chem., 2014, 28935, 24202–24214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H. Wang, H. M. Zhang, H. J. Yin, L. Q. Zheng, M. Q. Wei, H. Sha, Y. X. Li, Combination of a novel photosensitizer DTPP with 650 nm laser results in efficient apoptosis and cytoskeleton collapse in breast cancer MCF-7 cells, Cell Biochem. Biophys., 2014, 693, 549–554.

    Article  CAS  PubMed  Google Scholar 

  28. S. H. Jung, J. Y. Park, J. O. Yoo, I. Shin, Y. M. Kim, K. S. Ha, Identification and ultrastructural imaging of photodynamic therapy-induced microfilaments by atomic force microscopy, Ultramicroscopy, 2009, 10912, 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  29. A. Casas, G. Di Venosa, S. Vanzulli, C. Perotti, L. Mamome, L. Rodriguez, M. Simian, A. Juarranz, O. Pontiggia, T. Hasan, A. Batlle, Decreased metastatic phenotype in cells resistant to aminolevulinic acid-photodynamic therapy, Cancer Lett., 2008, 271, 342–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. Vallenius, Actin stress fibre subtypes in mesenchymal-migrating cells, Open Biol., 2013, 3, 130001. 10.1098/rsob.130001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. M. Yilmaz, G. Christofori G, EMT, the cytoskeleton, and cancer cell invasion, Cancer Metastasis Rev., 2009, 281–2, 15–33. 10.1007/s10555-008-9169-0. Review

    Article  PubMed  Google Scholar 

  32. C. Guo, S. Liu, J. Wang, M. Z. Sun, F. T. Greenaway, ACTB in cancer, Clin. Chim. Acta, 2013, 417, 39–44.

    Article  CAS  PubMed  Google Scholar 

  33. P. F. Bousquet, L. A. Paulsen, C. Fondy, K. M. Lipski, K. J. Loucy, T. P. Fondy, Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma, Cancer Res., 1990, 50, 1431–1439.

    CAS  PubMed  Google Scholar 

  34. A. M. Senderowicz, G. Kaur, E. Sainz, C. Laing, W. D. Inman, J. Rodriguez, P. Crews, L. Malspeis, M. R. Grever, E. A. Sausville, K. Duncan, Jasplakinolide’s inhibition of the growth of prostate carcinoma cells in vitro with disruption of the actin cytoskeleton, J. Natl. Cancer Inst., 1995, 87, 46–51.

    Article  CAS  PubMed  Google Scholar 

  35. T. T. Bonello, J. R. Stehn, P. W. Gunning, New approaches to targeting the actin cytoskeleton for chemotherapy, Future Med. Chem., 2009, 1, 1311–1331.

    Article  CAS  PubMed  Google Scholar 

  36. S. I. Ellenbroek, J. G. Collard, Rho GTPases: functions and association with cancer, Clin. Exp. Metastasis, 2007, 248, 657–672.

    Article  CAS  PubMed  Google Scholar 

  37. P. Riou, P. Villalonga, A. J. Ridley, Rnd proteins: multifunctional regulators of the cytoskeleton and cell cycle progression, Bioessays, 2010, 3211, 986–992.

    Article  CAS  PubMed  Google Scholar 

  38. R. Sanovic, B. Krammer, S. Grumboeck, T. Verwanger, Time-resolved gene expression profiling of human squamous cell carcinoma cells during the apoptosis process induced by photodynamic treatment with hypericin, Int. J. Oncol., 2009, 35, 921–939.

    CAS  PubMed  Google Scholar 

  39. W. T. Chang, B. J. Yo, W. H. Yang, C. Y. Wu, D. T. Bau, H. Z. Lee, Protein kinase C delta-mediated cytoskeleton remodeling is involved in aloe-emodin-induced photokilling of human lung cancer cells, Anticancer Res., 2012, 329, 3707–3713.

    CAS  PubMed  Google Scholar 

  40. S. A. Boswell, P. P. Ongusaha, P. Nghiem, S. W. Lee, The protective role of a small GTPase RhoE against UVB-induced DNA damage in keratinocytes, J. Biol. Chem., 2007, 282, 4850–4858.

    Article  CAS  PubMed  Google Scholar 

  41. K. Riento, P. Villalonga, R. Garg, A. Ridley, Function and regulation of RhoE, Biochem. Soc. Trans., 2005, 33, 649–651.

    Article  CAS  PubMed  Google Scholar 

  42. W. K. Kang, I. Lee, C. Park, Characterization of RhoA-mediated chemoresistance in gastric cancer cells, Cancer Res. Treat., 2005, 374, 251–256.

    Article  PubMed  PubMed Central  Google Scholar 

  43. K. Berg, J. C. Moan, J. Bommer, J. W. Winkelman, Cellular inhibition of microtubule assembly by photoactivated sulphonated meso-tetraphenylporphines, Int. J. Radiat. Biol., 1990, 58, 475–487.

    Article  CAS  PubMed  Google Scholar 

  44. L. A. Spron, T. H. Foster, Photofrin and light induces microtubule depolymerization in cultured human endothelial cell, Cancer Res., 1992, 52, 3443–3448.

    Google Scholar 

  45. A. Juarranz, A. Villanueva, V. Diaz, M. Canete, Photodynamic effects of the cationic porphyrin, mesotetra(4N-methylpyridy1) porphine. on microtuhules of HeLa cells, J. Photochem. Photobiol., B, 1995, 27, 47–53.

    Article  CAS  Google Scholar 

  46. H. Lee, W. H. Yang, M. J. Hour, C. Y. Wu, W. H. Peng, B. Y. Bao, P. H. Han, D. T. Bau, Photodynamic activity of aloe-emodin induces resensitization of lung cancer cells to anoikis, Eur. J. Pharmacol., 2010, 6481–3, 50–58.

    Article  CAS  PubMed  Google Scholar 

  47. A. Vantieghem, Y. Xu, Z. Assefa, J. Piette, J. R. Vandenheede, W. Merlevede, P. A. De Witte, P. Agostinis, Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis, J. Biol. Chem., 2002, 27740, 37718–37731.

    Article  CAS  PubMed  Google Scholar 

  48. K. N. Bhalla, Microtubule-targeted anticancer agents and apoptosis, Oncogene, 2003, 2256, 9075–9086.

    Article  CAS  PubMed  Google Scholar 

  49. D. K. Moss, V. M. Betin, S. D. Malesinski, J. D. Lane, A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation, J. Cell Sci., 2006, 119Pt 11, 2362–2374.

    Article  CAS  PubMed  Google Scholar 

  50. C. D. Scatena, Z. A. Stewart, D. Mays, L. J. Tang, C. J. Keefer, S. D. Leach, J. Pietenpol, J. Biol. Chem., 1998, 273, 30777–30784.

    Article  CAS  PubMed  Google Scholar 

  51. Z. F. Zhang, Y. Huang, X. Shi, R. X. Wang, X. Y. Lin, X. D. Lin, H. Zheng, L. B. Li, Inhibitory effect of photodynamic therapy combined with paclitaxel on the proliferation of esophageal carcinoma Eca-109 cells, Nanfang Yike Daxue Xuebao, 2010, 306, 1310–1315.

    PubMed  Google Scholar 

  52. S. Park, S. P. Hong, T. Y. Oh, S. Bang, J. B. Chung, S. Y. Song, Paclitaxel augments cytotoxic effect of photodynamic therapy using verteporfin in gastric and bile duct cancer cells, Photochem. Photobiol. Sci., 2008, 77, 769–774.

    Article  CAS  PubMed  Google Scholar 

  53. R. Hornung, H. Walt, N. E. Crompton, K. A. Keefe, B. Jentsch, G. Perewusnyk, U. Haller, O. R. Köchli, m-THPC-mediated photodynamic therapy (PDT) does not induce resistance to chemotherapy, radiotherapy or PDT on human breast cancer cells in vitro, Photochem. Photobiol., 1998, 684, 569–574.

    Article  CAS  PubMed  Google Scholar 

  54. L. W. Ma, K. Berg, H. E. Danielsen, O. Kaalhus, V. Iani, J. Moan, Enhanced antitumour effect of photodynamic therapy by microtubule inhibitors, Cancer Lett., 1996, 1091–2, 129–139.

    Article  CAS  PubMed  Google Scholar 

  55. M. Dellinger, G. Moreno, C. Salet, H. Tapiero, T. J. Lampidis, Cytotoxic and photodynamic effects of Photofrin on sensitive and multi-drug-resistant Friend leukaemia cells, Int. J. Radiat. Biol., 1992, 626, 735–741.

    Article  CAS  PubMed  Google Scholar 

  56. H. Aberle, H. Schwartz, R. Kemler, Cadherin–catenin complex: protein interactions and their implications for cadherin function, J. Cell. Biochem., 1996, 61, 514–523.

    Article  CAS  PubMed  Google Scholar 

  57. A. Perl, P. Wilgenbus, U. Dahl, H. Semb, G. Christofori, A causal role for E-cadherin in the transition from adenoma to carcinoma, Nature, 1998, 392, 190–193.

    Article  CAS  PubMed  Google Scholar 

  58. R. B. Hazan, R. Qiao, R. Keren, I. Badano, K. Suyama, Cadherin switch in tumor progression, Ann. N. Y. Acad. Sci., 2004, 1014, 155–163.

    Article  CAS  PubMed  Google Scholar 

  59. J. Espada, S. Galaz, F. Sanz-Rodríguez, A. Blázquez-Castro, J. C. Stockert, L. Bagazgoitia, P. Jaén, S. González, A. Cano, A. Juarranz, Oncogenic H-Ras and PI3 K signaling can inhibit E-cadherin-dependent apoptosis and promote cell survival after photodynamic therapy in mouse keratinocytes, J. Cell Physiol., 2009, 2191, 84–93.

    Article  CAS  PubMed  Google Scholar 

  60. J. Mejlvang, M. Kriajevska, F. Berditchevski, I. Bronstein, E. Lukanidin, J. Pringle, J. Mellon, E. Tulchinsky, Characterization of E-cadherin-dependent and -independent events in a new model of c-Fos-mediated epithelial–mesenchymal transition, Exp. Cell Res., 2007, 313, 380–393.

    Article  CAS  PubMed  Google Scholar 

  61. S. Hirohashi, Inactivation of the E-cadherin-mediated cell adhesion system in human cancers, Am. J. Pathol., 1998, 153, 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. R. Aoki, M. Yasuda, R. Torisu, J. Nakamoto, Y. Yamamoto, S. Ito, Relationship between lymph node metastasis and E-cadherin expression in submucosal invasive gastric carcinomas with gastric-phenotype, J. Med. Invest., 2007, 54, 159–167.

    Article  PubMed  Google Scholar 

  63. P. Guilford, B. Humar, V. Blair, Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice, Gastric, Cancer, 2010, 131, 1–10.

    CAS  Google Scholar 

  64. J. Masterson, S. O’Dea, Posttranslational truncation of E-cadherin and significance for tumour progression, Cells Tissues Organs, 2007, 1851–3, 175–179.

    Article  CAS  PubMed  Google Scholar 

  65. A. Chen, H. Beetham, M. A. Black, R. Priya, B. J. Telford, J. Guest, G. A. Wiggins, T. D. Godwin, A. S. Yap, P. J. Guilford, E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epithelial-mesenchymal transition, BMC Cancer, 2014, 14, 552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. J. M. Runnels, N. Chen, B. Ortel, D. Kato, T. Hasan, BPD-MA mediated photosensitization in vitro and in vivo: cellular adhesion and beta1 integrin expression in ovarian cancer cells, Br. J. Cancer, 1999, 80, 946–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. P. Margaron, R. Sorrenti, J. G. Levy, Photodynamic therapy inhibits cell adhesion without altering integrin expression, Biochim. Biophys. Acta, 1997, 1359, 200–210.

    Article  CAS  PubMed  Google Scholar 

  68. A. B. Uzdensky, A. Juzeniene, E. Kolpakova, G. O. Hjortland, P. Juzenas, J. Moan, Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum, Biochem. Biophys. Res. Commun., 2004, 322, 452–457.

    Article  CAS  PubMed  Google Scholar 

  69. R. O. Hynes, Integrins: bidirectional, allosteric signalling machines, Cell, 2002, 110, 673–687.

    Article  CAS  PubMed  Google Scholar 

  70. C. Brakebusch, R. Fässler, beta 1 integrin function in vivo: adhesion, migration and more, Cancer Metastasis Rev., 2005, 24, 403–411.

    Article  CAS  PubMed  Google Scholar 

  71. I. Eke, N. Cordes, Focal adhesion signaling and therapy resistance in cancer, Semin. Cancer Biol., 2015 10.1016/j.semcancer.2014.07.009

    Google Scholar 

  72. S. Galaz, J. Espada, J. C. Stockert, M. Pacheco, F. Sanz-Rodríguez, R. Arranz, S. Rello, M. Cañete, A. Villanueva, M. Esteller, A. Juarranz, Loss of E-cadherin mediated cell–cell adhesion as an early trigger of apoptosis induced by photodynamic treatment, J. Cell Physiol., 2005, 2051, 86–96.

    Article  CAS  PubMed  Google Scholar 

  73. C. Pacheco-Soares, M. Maftou-Costa, C. G. D. A. Cunha Menezes Costa, A. C. D. E. Siqueira Silva, K. C. Moraes, Evaluation of photodynamic therapy in adhesion protein expression, Oncol. Lett., 2014, 82, 714–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. S. Ruhdorfer, R. Sanovic, V. Sander, B. Krammer, T. Verwanger, Gene expression profiling of the human carcinoma cell line A-431 after 5-aminolevulinic acid-based photodynamic treatment, Int. J. Oncol., 2007, 305, 1253–1262.

    CAS  PubMed  Google Scholar 

  75. A. B. Uzdensky, A. Juzeniene, E. Kolpakova, G. O. Hjortland, P. Juzenas, J. Moan, Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum, Biochem. Biophys. Res. Commun., 2004, 322, 452–457.

    Article  CAS  PubMed  Google Scholar 

  76. J. Labat-Robert, P. Birembaut, J. J. Adnet, F. Mercantini, L. Robert, Loss of fibronectin in human breast cancer, Cell Biol. Int. Rep., 1980, 46, 609–616.

    Article  CAS  PubMed  Google Scholar 

  77. E. Ruoslahti, Fibronectin in cell adhesion and invasion, Cancer Metastasis Rev., 1984, 31, 43–51. Review

    Article  CAS  PubMed  Google Scholar 

  78. F. E. Franke, R. Von Georgi, M. Zygmunt, K. Munstedt, Association between fibronectin expression and prognosis in ovarian carcinoma, Anticancer Res., 2003, 23, 4261–4267.

    CAS  PubMed  Google Scholar 

  79. A. Demeter, I. Sziller, Z. Csapo, J. Olah, G. Keszler, A. Jeney, Z. Papp, M. Staub, Molecular prognostic markers in recurrent and in non-recurrent epithelial ovarian cancer, Anticancer Res., 2005, 254, 2885–2889.

    CAS  PubMed  Google Scholar 

  80. B. Fernandez-Garcia, N. Eiró, L. Marín, S. González-Reyes, L. O. González, M. L. Lamelas, F. J. Vizoso, Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis, Histopathology, 2014, 644, 512–522.

    Article  PubMed  Google Scholar 

  81. M. Kaspar, L. Zardi, D. Neri, Fibronectin as target for tumor therapy, Int. J. Cancer, 2006, 1186, 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  82. R. Schmidmaier, P. Baumann, ANTI-ADHESION evolves to a promising therapeutic concept in oncology, Curr. Med. Chem., 2008, 1510, 978–990.

    Article  CAS  PubMed  Google Scholar 

  83. L. A. Hazlehurst, W. S. Dalton, Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies, Cancer Metastasis Rev., 2001, 20, 43–50.

    Article  CAS  PubMed  Google Scholar 

  84. A. Casas, C. Perotti, B. Ortel, G. Di Venosa, M. Saccoliti, A. Batlle, T. Hasan, Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells, Int. J. Oncol., 2006, 292, 397–405.

    CAS  PubMed  Google Scholar 

  85. L. Rodriguez, G. Di Venosa, M. Rivas, L. Mamone, L. Gándara, A. Juarranz, F. Sanz Rodriguez, A. Batlle, A. Casas A, Cell adhesion mechanisms involved in resistance to Photodynamic Therapy of Ras-expressing tumors, Br. J. Dermatol., 2011, 1645, 1125–1176., P30

    Article  Google Scholar 

  86. S. Hehlgans, M. Haase, N. Cordes, Signalling via integrins: implications for cell survival and anticancer strategies, Biochim. Biophys. Acta, 2007, 17751, 163–180.

    CAS  PubMed  Google Scholar 

  87. N. Cordes, Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity, Cancer Res., 2004, 64, 5683–5692.

    Article  CAS  PubMed  Google Scholar 

  88. H. Bill, B. Knudsen, S. Moores, S. Muthuswamy, V. Rao, J. Brugge, C. K. Miranti, Epidermal growth factor receptor-dependent regulation of integrinmediated signaling and cell cycle entry in epithelial cells, Mol. Cell Biol., 2004, 24, 8586–8599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. L. Moro, M. Venturino, C. Bozzo, L. Silengo, F. Altruda, L. Beguinot, G. Tarone, P. Defilippi, Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival, EMBO J., 1998, 17, 6622–6632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. V. Morello, S. Cabodi, S. Sigismund, M. P. Camacho-Leal, D. Repetto, M. Volante, M. Papotti, E. Turco, P. Defilippi, β1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells, Oncogene, 2011, 3039, 4087–4096.

    Article  CAS  PubMed  Google Scholar 

  91. J. A. Bonner, P. M. Harari, J. Giralt, N. Azarnia, D. M. Shin, R. B. Cohen, C. U. Jones, R. Sur, D. Raben, J. Jassem, R. Ove, M. S. Kies, J. Baselga, H. Youssoufian, N. Amellal, E. K. Rowinsky, K. K. Ang, Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck, N. Engl. J. Med., 2006, 3546, 567–578.

    Article  CAS  PubMed  Google Scholar 

  92. I. Eke, K. Storch, M. Krause, N. Cordes, Cetuximab attenuates its cytotoxic andradiosensitizing potential by inducing fibronectin biosynthesis, Cancer Res., 2013, 73, 5869–5879.

    Article  CAS  PubMed  Google Scholar 

  93. M. Petrás, T. Lajtos, E. Friedländer, A. Klekner, E. Pintye, B. G. Feuerstein, J. Szöllosi, G. Vereb, Molecular interactions of ErbB1 (EGFR) and integrin-β1 in astrocytoma frozensections predict clinical outcome and correlate with Akt-mediated in vitro radioresistance, Neuro- Oncology, 2013, 15, 1027–1040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. M. G. del Carmen, I. Rizvi, Y. Chang, A. C. Moor, E. Oliva, M. Sherwood, B. Pogue, T. Hasan, Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo, J. Natl. Cancer Inst., 2005, 9720, 1516–1524.

    Article  PubMed  CAS  Google Scholar 

  95. A. Moor, I. Rizvi, M. D. Savellano, W. Yu, M. G. Del Carmen and T. Hasan., Photoimmunotargeting of the epidermal growth factor receptor for the treatment of ovarian cancer. San Francisco (CA): 13th International Congress on Photobiology and 28th Annual Meeting ASP, 2000, 166

    Google Scholar 

  96. Z. Tong, G. Singh, A. J. Rainbow, Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy, Cancer Res., 2002, 62, 5528–5535.

    CAS  PubMed  Google Scholar 

  97. L. Vellon, J. A. Menendez, R. Lupu, A bidirectional “alpha(v)beta(3) integrin-ERK1/ERK2 MAPK” connection regulates the proliferation of breast cancer cells, Mol. Carcinog., 2006, 4510, 795–804.

    Article  CAS  PubMed  Google Scholar 

  98. C. J. Gomer, A. Ferrario, A. L. Murphree, The effect of localized porphyrin photodynamic therapy on the induction of tumour metastasis, Br. J. Cancer, 1987, 56, 27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. G. Canti, D. Lattuada, A. Nicolin, P. Taroni, G. Valentini, R. Cubeddu, Antitumor immunity induced by photodynamic therapy with aluminum disulfonated phthalocyanines and laser light, Anti-cancer Drugs, 1994, 5, 443–447.

    Article  CAS  PubMed  Google Scholar 

  100. S. Schreiber, S. Gross, A. Brandis, A. Harmelin, V. Rosenbach-Belkin, A. Scherz, Y. Salmon, Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery, Int. J. Cancer, 2003, 99, 279–285.

    Article  CAS  Google Scholar 

  101. V. Vonarx, M. Foultier, X. de Brito, L. Anasagasti, L. Morlet, T. Patrice, Photodynamic therapy decreases cancer colonic cell adhesiveness and metastatic potential, Res. Exp. Med., 1995, 195, 101–116.

    Article  CAS  Google Scholar 

  102. L. S. Bicalho, J. P. Longo, C. E. Cavalcanti, A. R. Simioni, A. L. Bocca, M. De, F. Santos, A. C. Tedesco, R. B. Azevedo, Photodynamic therapy leads to complete remission of tongue tumors and inhibits metastases to regional lymph nodes, J. Biomed. Nanotechnol., 2013, 95, 811–818.

    Article  CAS  PubMed  Google Scholar 

  103. T. Momma, M. R. Hamblin, H. C. Wu, T. Hasan, Photodynamic therapy of orthotopic prostate cancer with benzoporphyrin derivative: local control and distant metastasis, Cancer Res., 1998, 5823, 5425–5431.

    CAS  PubMed  Google Scholar 

  104. M. Foultier, V. Vonarx-Coinsmann, S. Cordel, A. Combre, T. Patrice, Modulation of colonic cancer cell adhesiveness by haematoporphyrin derivative photodynamic therapy, J. Photochem. Photobiol., 1994, 23, 9–17.

    Article  CAS  Google Scholar 

  105. H. Hirschberg, C. H. Sun, T. Krasieva, S. J. Madsen, Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells, Lasers Surg. Med., 2006, 3810, 939–945.

    Article  PubMed  Google Scholar 

  106. T. Tsai, H. T. Ji, P. C. Chiang, R. H. Chou, W. S. Chang, C. T. Chen, ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells, Lasers Surg. Med., 2009, 414, 305–315.

    Article  PubMed  Google Scholar 

  107. M. Chakrabarti, N. L. Banik, S. K. Ray, Photofrin based photodynamic therapy and miR-99a transfection inhibited FGFR3 and PI3 K/Akt signaling mechanisms to control growth of human glioblastoma In vitro and in vivo, PLoS One, 2013, 82, e55652. 10.1371/journal.pone.0055652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. P. C. Chiang, R. H. Chou, H. F. Chien, T. Tsai, C. T. Chen, Chloride intracellular channel 4 involves in the reduced invasiveness of cancer cells treated by photodynamic therapy, Lasers Surg. Med., 2013, 451, 38–47.

    Article  PubMed  Google Scholar 

  109. S. Vogel, C. Peters, N. Etminan, V. Börger, A. Schimanski, M. C. Sabel, R. V. Sorg, Migration of mesenchymal stem cells towards glioblastoma cells depends on hepatocyte-growth factor and is enhanced by aminolaevulinic acid-mediated photodynamic treatment, Biochem. Biophys. Res. Commun., 2013, 4313, 428–432.

    Article  CAS  PubMed  Google Scholar 

  110. N. Rousset, V. Vonarx, S. Eleouet, J. Carre, E. Kerninon, Y. Lajat, T. Patrice, Effects of photodynamic therapy on adhesion molecules and metastasis, J. Photochem. Photobiol., B, 1999, 52, 65–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Casas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Venosa, G., Perotti, C., Batlle, A. et al. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem Photobiol Sci 14, 1451–1464 (2015). https://doi.org/10.1039/c4pp00445k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00445k

Navigation