Skip to main content
Log in

Cytosine containing dipyrimidine sites can be hotspots of cyclobutane pyrimidine dimer formation after UVB exposure

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Exposure to the UV component of sunlight is the principal factor leading to skin cancer development. Cyclobutane pyrimidine dimers (CPD) are considered to be the most important pre-mutagenic type of DNA damage involved in skin carcinogenesis. To better understand the biological mechanisms of UV carcinogenesis, it is critical to understand the CPD distribution between the four types of dipyrimidine sites. Most of our knowledge regarding CPD distribution comes from in vitro studies or from investigations using UVC, even though we are not naturally exposed to these UV wavelengths. We exposed normal human fibroblasts and purified DNA to UVB. Using ligation-mediated PCR, we quantified the CPD formation at 952 dipyrimidine sites among the PGK1 (phosphoglycerate kinase 1), JUN, HRAS, KRAS, NRAS and TP53 genes. In cellulo, we found a CPD distribution of 27:27:25:21 for TT:CC:TC:CT. This distribution is similar to that observed in vitro. In the analysed genes, we observed some extremely frequently damaged dipyrimidine sites and many of these occurred at potentially frequently mutated sites, i.e. at dipyrimidine sites containing cytosine. Also, most of the frequently damaged dipyrimidine sites in cellulo that are not frequently damaged in vitro are found on TP53 and NRAS. This indicates that many of the frequently damaged dipyrimidine sites in cellulo are on genes frequently mutated in skin cancer. All these results support the view that CPD are the main UVB-induced mutagenic photoproducts and provide evidence of the importance of CPD formation at sites containing cytosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

6-4 Photoproducts:

Pyrimidine (6-4) pyrimidone photoproducts

CPD:

Cyclobutane pyrimidine dimers

LMPCR:

Ligation-mediated polymerase chain reaction

PGK1:

Phosphoglycerate kinase 1

UV:

Ultraviolet

References

  1. H. N. Ananthaswamy, W. E. Pierceall, Molecular mechanisms of ultraviolet radiation carcinogenesis, Photochem. Photobiol., 1990, 52, 1119–1136.

    Article  CAS  PubMed  Google Scholar 

  2. D. E. Brash, UV mutagenic photoproducts in Escherichia coli and human cells: a molecular genetics perspective on human skin cancer, Photochem. Photobiol., 1988, 48, 59–66.

    Article  CAS  PubMed  Google Scholar 

  3. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel, E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.

    Article  CAS  Google Scholar 

  4. T. Douki, D. Perdiz, P. Grof, Z. Kuluncsics, E. Moustacchi, J. Cadet, E. Sage, Oxidation of guanine in cellular DNA by solar UV radiation: biological role, Photochem. Photobiol., 1999, 70, 184–190.

    Article  CAS  PubMed  Google Scholar 

  5. D. Perdiz, P. Grof, M. Mezzina, O. Nikaido, E. Moustacchi, E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis, J. Biol. Chem., 2000, 275, 26732–26742.

    Article  CAS  PubMed  Google Scholar 

  6. D. L. Mitchell, J. Jen, J. E. Cleaver, Sequence specificity of cyclobutane pyrimidine dimers in DNA treated with solar (ultraviolet B) radiation, Nucleic Acids Res., 1992, 20, 225–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. P. J. Rochette, J. P. Therrien, R. Drouin, D. Perdiz, N. Bastien, E. A. Drobetsky, E. Sage, UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells, Nucleic Acids Res., 2003, 31, 2786–2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    Article  CAS  PubMed  Google Scholar 

  9. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. A. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden, C. A. Chadwick, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111, 936–940.

    Article  CAS  PubMed  Google Scholar 

  11. J. Cadet, S. Mouret, J. L. Ravanat, T. Douki, Photoinduced damage to cellular DNA: direct and photosensitized reactions, Photochem. Photobiol., 2012, 88, 1048–1065.

    Article  CAS  PubMed  Google Scholar 

  12. P. M. Girard, S. Francesconi, D. Graindorge, P. J. Rochette, R. Drouin, E. Sage, UVA-induced Damage to DNA and proteins: direct versus indirect photochemical processes, J. Phys.: Conf. Ser., 2011, 261, 012002. 10.1088/1742-6596/261/1/012002

    Google Scholar 

  13. Y. Jiang, M. Rabbi, M. Kim, C. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski, P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    CAS  PubMed  Google Scholar 

  15. W. J. Thilly, Induced mutagenesis: molecular mechanisms and their implications for environmental protection, Plenum Press, New York, 1983.

    Google Scholar 

  16. R. Drouin, J. P. Therrien, UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53, Photochem. Photobiol., 1997, 66, 719–726.

    Article  CAS  PubMed  Google Scholar 

  17. G. P. Pfeifer, Formation and processing of UV photoproducts: effects of DNA sequence and chromatin environment, Photochem. Photobiol., 1997, 65, 270–283.

    Article  CAS  PubMed  Google Scholar 

  18. D. E. Brash, S. Seetharam, K. H. Kraemer, M. M. Seidman, A. Bredberg, Photoproduct frequency is not the major determinant of UV base substitution hot spots or cold spots in human cells, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 3782–3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Tornaletti, D. Rozek, G. P. Pfeifer, The distribution of UV photoproducts along the human p53 gene and its relation to mutations in skin cancer, Oncogene, 1993, 8, 2051–2057.

    CAS  PubMed  Google Scholar 

  20. G. P. Holmquist, S. Gao, Somatic mutation theory, DNA repair rates, and the molecular epidemiology of p53 mutations, Mutat. Res., 1997, 386, 69–101.

    Article  CAS  PubMed  Google Scholar 

  21. H. Ikehata, T. Ono, The mechanisms of UV mutagenesis, J. Radiat. Res., 2011, 52, 115–125.

    Article  CAS  PubMed  Google Scholar 

  22. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Ponten, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. E. A. Drobetsky, A. J. Grosovsky, B. W. Glickman, The specificity of UV-induced mutations at an endogenous locus in mammalian cells, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 9103–9107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. S. Jonason, S. Kunala, G. J. Price, R. J. Restifo, H. M. Spinelli, J. A. Persing, D. J. Leffell, R. E. Tarone, D. E. Brash, Frequent clones of p53-mutated keratinocytes in normal human skin, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 14025–14029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Q. Song, V. J. Cannistraro, J. S. Taylor, Rotational position of a 5-methylcytosine-containing cyclobutane pyrimidine dimer in a nucleosome greatly affects its deamination rate, J. Biol. Chem., 2011, 286, 6329–6335.

    Article  CAS  PubMed  Google Scholar 

  26. D. H. Lee, G. P. Pfeifer, Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis, J. Biol. Chem., 2003, 278, 10314–10321.

    Article  CAS  PubMed  Google Scholar 

  27. N. Jiang, J. S. Taylor, In vivo evidence that UV-induced C->T mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products, Biochemistry, 1993, 32, 472–481.

    Article  CAS  PubMed  Google Scholar 

  28. V. J. Cannistraro, J. S. Taylor, Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots, J. Mol. Biol., 2009, 392, 1145–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. T. Douki, J. Cadet, Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions, Biochemistry, 2001, 40, 2495–2501.

    Article  CAS  PubMed  Google Scholar 

  30. V. T. Tormanen, G. P. Pfeifer, Mapping of UV photoproducts within ras proto-oncogenes in UV-irradiated cells: correlation with mutations in human skin cancer, Oncogene, 1992, 7, 1729–1736.

    CAS  PubMed  Google Scholar 

  31. P. J. Rochette, S. Lacoste, J. P. Therrien, N. Bastien, D. E. Brash, R. Drouin, Influence of cytosine methylation on ultraviolet-induced cyclobutane pyrimidine dimer formation in genomic DNA, Mutat. Res., 2009, 665, 7–13.

    Article  CAS  PubMed  Google Scholar 

  32. S. Tommasi, M. F. Denissenko, G. P. Pfeifer, Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases, Cancer Res., 1997, 57, 4727–4730.

    CAS  PubMed  Google Scholar 

  33. Y. H. You, C. Li, G. P. Pfeifer, Involvement of 5-methylcytosine in sunlight-induced mutagenesis, J. Mol. Biol., 1999, 293, 493–503.

    Article  CAS  PubMed  Google Scholar 

  34. S. Tornaletti, G. P. Pfeifer, UV damage and repair mechanisms in mammalian cells, Bioessays, 1996, 18, 221–228.

    Article  CAS  PubMed  Google Scholar 

  35. E. A. Drobetsky, E. Sage, UV-induced G:C->A:T transitions at the APRT locus of Chinese hamster ovary cells cluster at frequently damaged 5’-TCC-3’ sequences, Mutat. Res., 1993, 289, 131–138.

    Article  CAS  PubMed  Google Scholar 

  36. M. H. Patrick, Studies on thymine-derived UV photoproducts in DNA - I. Formation and biological role of pyrimidine adducts in DNA, Photochem. Photobiol., 1977, 25, 357–372.

    Article  CAS  PubMed  Google Scholar 

  37. I. D. Podmore, M. S. Cooke, K. E. Herbert, J. Lunec, Quantitative determination of cyclobutane thymine dimers in DNA by stable isotope-dilution mass spectrometry, Photochem. Photobiol., 1996, 64, 310–315.

    Article  CAS  PubMed  Google Scholar 

  38. G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, Binding of transcription factors creates hot spots for UV photoproducts in vivo, Mol. Cell. Biol., 1992, 12, 1798–1804.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. G. P. Pfeifer, A. D. Riggs, Genomic footprinting by ligation mediated polymerase chain reaction, Methods Mol. Biol., 1993, 15, 153–168.

    CAS  PubMed  Google Scholar 

  40. G. P. Pfeifer, A. D. Riggs, Genomic sequencing, Methods Mol. Biol., 1993, 23, 169–181.

    CAS  PubMed  Google Scholar 

  41. S. Gao, R. Drouin, G. P. Holmquist, DNA repair rates mapped along the human PGK1 gene at nucleotide resolution, Science, 1994, 263, 1438–1440.

    Article  CAS  PubMed  Google Scholar 

  42. S. Tornaletti, G. P. Pfeifer, Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer, Science, 1994, 263, 1436–1438.

    Article  CAS  PubMed  Google Scholar 

  43. H. Rodriguez, R. Drouin, G. P. Holmquist, T. R. O’Connor, S. Boiteux, J. Laval, J. H. Doroshow, S. A. Akman, Mapping of copper/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by ligation-mediated polymerase chain reaction, J. Biol. Chem., 1995, 270, 17633–17640.

    Article  CAS  PubMed  Google Scholar 

  44. D. W. Brown, L. J. Libertini, C. Suquet, E. W. Small, M. J. Smerdon, Unfolding of nucleosome cores dramatically changes the distribution of ultraviolet photoproducts in DNA, Biochemistry, 1993, 32, 10527–10531.

    Article  CAS  PubMed  Google Scholar 

  45. J. M. Gale, K. A. Nissen, M. J. Smerdon, UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 6644–6648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J. R. Pehrson, Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 9149–9153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. J. R. Pehrson, Probing the conformation of nucleosome linker DNA in situ with pyrimidine dimer formation, J. Biol. Chem., 1995, 270, 22440–22444.

    Article  CAS  PubMed  Google Scholar 

  48. S. Tornaletti, G. P. Pfeifer, UV light as a footprinting agent: modulation of UV-induced DNA damage by transcription factors bound at the promoters of three human genes, J. Mol. Biol., 1995, 249, 714–728.

    Article  CAS  PubMed  Google Scholar 

  49. G. P. Pfeifer, R. Drouin, A. D. Riggs, G. P. Holmquist, In vivo mapping of a DNA adduct at nucleotide resolution: detection of pyrimidine (6-4) pyrimidone photoproducts by ligation-mediated polymerase chain reaction, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 1374–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R. Drouin, N. Bastien, J. F. Millau, F. Vigneault, I. Paradis, In cellulo DNA analysis (LMPCR footprinting), Methods Mol. Biol., 2009, 543, 293–336.

    Article  CAS  PubMed  Google Scholar 

  51. R. Drouin, J. P. Therrien, M. Angers, S. Ouellet, In vivo DNA analysis, Methods Mol. Biol., 2001, 148, 175–219.

    CAS  PubMed  Google Scholar 

  52. H. Rodriguez, S. A. Akman, Mapping oxidative DNA damage at nucleotide level, Free Radic. Res., 1998, 29, 499–510.

    Article  CAS  PubMed  Google Scholar 

  53. D. Rozek, G. P. Pfeifer, In vivo protein-DNA interactions at the c-jun promoter: preformed complexes mediate the UV response, Mol. Cell. Biol., 1993, 13, 5490–5499.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Régen Drouin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastien, N., Therrien, JP. & Drouin, R. Cytosine containing dipyrimidine sites can be hotspots of cyclobutane pyrimidine dimer formation after UVB exposure. Photochem Photobiol Sci 12, 1544–1554 (2013). https://doi.org/10.1039/c3pp50099c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50099c

Navigation