Skip to main content
Log in

Ultrafast electronic deactivation dynamics of the inosine dimer — a model case for H-bonded purine bases

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The structural properties and ultrafast electronic deactivation dynamics of the inosine dimer in CHCl3 have been investigated by two-dimensional 1H NMR and static FTIR spectroscopy and by femtosecond time-resolved transient absorption spectroscopy, respectively. The 1H NMR and IR spectra show the formation of a well-defined, symmetric dimer with an association equilibrium constant of KI·I = 690 ± 100 M-1. The excited-state dynamics after photoexcitation at λpump = 260 nm monitored by ultrafast absorption spectroscopy show great similarity with those of the monomer inosine in an aqueous solution and are governed by a decay time of t = 90 ± 10 fs, which is one of the shortest electronic lifetimes of all nucleobases and nucleobase dimers studied so far. On the basis of these observations, the inosine dimer is expected to follow a similar relaxation pathway as the monomer, involving an out-of-plane deformation of the six-membered ring. The importance of the C(2) position for the electronic deactivation of hypoxanthine and guanine is discussed. The obtained well-determined structure and straightforward dynamics qualify the inosine dimer as an excellent reference case for more complicated systems such as the G·G dimer and the G·C and A·T Watson-Crick pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. Hill-Perkins, M. D. Jones, P. Karran, Site-specific mutagenesis in vivo by single methylated or deaminated purine bases, Mutat. Res., 1986, 162, 153–163.

    Article  CAS  PubMed  Google Scholar 

  2. K. A. Schouten, B. Weiss, Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid, Mutat. Res., 1999, 435, 245–254.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Kyogoku, R. C. Lord, A. Rich, An infrared study of the hydrogen-bonding specificity of hypoxanthine and other nucleic acid derivatives, Biochim. Biophys. Acta, 1969, 179, 10–17.

    Article  CAS  PubMed  Google Scholar 

  4. F. H. Martin, M. M. Castro, F. Aboul-ela, I. Tinoco, Base pairing involving deoxyinosine: implications for probe design, Nucleic Acids Res., 1985, 13, 8927–8938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. E. Ohtsuka, S. Matsuki, M. Ikehara, Y. Takahashi, K. Matsubara, An alternative approach to deoxyoligonucleotides as hybridization probes by insertion of deoxyinosine at ambiguous codon positions, J. Biol. Chem., 1985, 260, 2605–2608.

    Article  CAS  PubMed  Google Scholar 

  6. M. R. Valentine, J. Termini, Kinetics of formation of hypoxanthine containing base pairs by HIV-RT: RNA template effects on the base substitution frequencies, Nucleic Acids Res., 2001, 29, 1191–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Y. W. Kow, Repair of deaminated bases in DNA, Free Radical Biol. Med., 2002, 33, 886–893.

    Article  CAS  Google Scholar 

  8. G. Paragi, I. Pálinkó, C. Van Alsenoy, I. K. Gyémánt, B. Penke, Z. Timár, Ab initio studies on the H-bonding of hypoxanthine and DNA bases, New J. Chem., 2002, 26, 1503–1506.

    Article  CAS  Google Scholar 

  9. N. E. Watkins, J. SantaLucia, Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes, Nucleic Acids Res., 2005, 33, 6258–6267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. P. Karran, T. Lindahl, Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus, Biochemistry, 1980, 19, 6005–6011.

    Article  CAS  PubMed  Google Scholar 

  11. T. Nguyen, D. Brunson, C. L. Crespi, B. W. Penman, J. S. Wishnok, S. R. Tannenbaum, DNA damage and mutation in human cells exposed to nitric oxide in vitro, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 3030–3034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. P. E. Spencer, A. Jenner, K. Chimel, O. I. Aruoma, C. E. Cross, R. Wu, B. Halliwell, DNA damage in human respiratory tract epithelial cells: damage by gas phase cigarette smoke apparently involves attack by reactive nitrogen species in addition to oxygen radicals, FEBS Lett., 1995, 375, 179–182.

    Article  CAS  PubMed  Google Scholar 

  13. B. Pang, J. L. McFaline, N. E. Burgis, M. Dong, K. Taghizadeh, M. R. Sullivan, C. E. Elmquist, R. P. Cunningham, P. C. Dedon, Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 2319–2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. Ohtsuka, Non-canonical hydrogen bonds in genetic information flow, Proc. Jpn. Acad., Ser. B, 2005, 81, 393–402.

    Article  CAS  Google Scholar 

  15. N. A. Siegfried, S. L. Metzger, P. C. Bevilacqua, Folding cooperativity in RNA and DNA is dependent on position in the helix, Biochemistry, 2007, 46, 172–181.

    Article  CAS  PubMed  Google Scholar 

  16. X. Sun, J. K. Lee, Stability of DNA duplexes containing hypoxanthine (inosine): gas versus solution phase and biological implications, J. Org. Chem., 2010, 75, 1848–1854.

    Article  CAS  PubMed  Google Scholar 

  17. M. Krepl, M. Otyepka, P. Banáš, J. Šponer, Effect of guanine to inosine substitution on stability of canonical DNA and RNA duplexes: molecular dynamics thermodynamics integration study, J. Phys. Chem. B, 2013, 117, 1872–1879.

    Article  CAS  PubMed  Google Scholar 

  18. K. Röttger, R. Siewertsen, F. Temps, Ultrafast electronic deactivation dynamics of the rare natural nucleobase hypoxanthine, Chem. Phys. Lett., 2012, 536, 140–146.

    Article  CAS  Google Scholar 

  19. J. Chen, B. Kohler, Ultrafast nonradiative decay by hypoxanthine and several methylxanthines in aqueous and acetonitrile solution, Phys. Chem. Chem. Phys., 2012, 14, 10677–10682.

    Article  CAS  PubMed  Google Scholar 

  20. J. P. Villabona-Monsalve, R. Noria, S. Matsika, J. Peón, On the accessibility to conical intersections in purines: hypoxanthine and its singly protonated and deprotonated forms, J. Am. Chem. Soc., 2012, 134, 7820–7829.

    Article  CAS  PubMed  Google Scholar 

  21. A. L. Sobolewski, W. Domcke, Ab initio studies on the photophysics of the guanine-cytosine base pair, Phys. Chem. Chem. Phys., 2004, 6, 2763–2771.

    Article  CAS  Google Scholar 

  22. A. L. Sobolewski, W. Domcke, C. Hättig, Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 17903–17906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Abo-Riziq, L. Grace, E. Nir, M. Kabelac, P. Hobza, M. S. de Vries, Photochemical selectivity in guanine-cytosine base-pair structures, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 20–23.

    Article  CAS  PubMed  Google Scholar 

  24. A. L. Sobolewski, W. Domcke, Relevance of electron-driven proton-transfer processes for the photostability of proteins, ChemPhysChem, 2006, 7, 561–564.

    Article  CAS  PubMed  Google Scholar 

  25. N. K. Schwalb, F. Temps, Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine, J. Am. Chem. Soc., 2007, 129, 9272–9273.

    Article  CAS  PubMed  Google Scholar 

  26. G. Groenhof, L. V. Schäfer, M. Boggio-Pasqua, M. Goette, H. Grubmüller, M. A. Robb, Ultrafast deactivation of an excited cytosine-guanine base pair in DNA, J. Am. Chem. Soc., 2007, 129, 6812–6819.

    Article  CAS  PubMed  Google Scholar 

  27. N. K. Schwalb, T. Michalak, F. Temps, Ultrashort fluorescence lifetimes of hydrogen-bonded base pairs of guanosine and cytidine in solution, J. Phys. Chem. B, 2009, 113, 16365–16376.

    Article  CAS  PubMed  Google Scholar 

  28. L. Biemann, S. A. Kovalenko, K. Kleinermanns, R. Mahrwald, M. Markert, R. Improta, Excited state proton transfer is not involved in the ultrafast deactivation of guanine-cytosine pair in solution, J. Am. Chem. Soc., 2011, 133, 19664–19667.

    Article  CAS  PubMed  Google Scholar 

  29. S. Yamazaki, T. Taketsugu, Photoreaction channels of the guanine-cytosine base pair explored by long-range corrected TDDFT calculations, Phys. Chem. Chem. Phys., 2012, 14, 8866–8877.

    Article  CAS  PubMed  Google Scholar 

  30. K. K. Ogilvie, The tert-butyldimethylsilyl group as a protecting group in deoxynucleosides, Can. J. Chem., 1973, 51, 3799–3807.

    Article  CAS  Google Scholar 

  31. T. Hupp, C. Sturm, E. M. Basílio Janke, M. Pérez Cabre, K. Weisz, B. Engels, A combined computational and experimental study of the hydrogen-bonded dimers of xanthine and hypoxanthine, J. Phys. Chem. A, 2005, 109, 1703–1712.

    Article  CAS  PubMed  Google Scholar 

  32. M. Yang, L. Szyc, K. Röttger, H. Fidder, E. T. J. Nibbering, T. Elsaesser, F. Temps, Dynamics and couplings of N-H stretching excitations of guanosine-cytidine base pairs in solution, J. Phys. Chem. B, 2011, 115, 5484–5492.

    Article  CAS  PubMed  Google Scholar 

  33. H. Fidder, M. Yang, E. T. J. Nibbering, T. Elsaesser, K. Röttger, F. Temps, N-H stretching vibrations of guanosine-cytidine base pairs in solution: ultrafast dynamics, couplings, and line shapes, J. Phys. Chem. A, 2013, 117, 845–854.

    Article  CAS  PubMed  Google Scholar 

  34. L. Biemann, T. Häber, D. Maydt, K. Schaper, K. Kleinermanns, Structural assignment of adenine aggregates in CDCl3, J. Chem. Phys., 2008, 128, 195103.

    Article  PubMed  CAS  Google Scholar 

  35. C. Greve, N. K. Preketes, H. Fidder, R. Costard, B. Koeppe, I. A. Heisler, S. Mukamel, F. Temps, E. T. J. Nibbering, T. Elsaesser, N-H stretching excitations in adenosine-thymidine base pairs in solution: pair geometries, infrared line shapes, and ultrafast vibrational dynamics, J. Phys. Chem. A, 2013, 117, 594–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. Röttger, N. K. Schwalb, F. Temps, Electronic deactivation of guanosine in extended hydrogen-bonded self-assemblies, J. Phys. Chem. A, 2013, 117, 2469–2478.

    Article  PubMed  CAS  Google Scholar 

  37. CRC Handbook of Chemistry and Physics, ed. R. C. Weast, CRC Press, 67th edn, 1986-1987, pp. E58-E59.

  38. N. K. Schwalb, F. Temps, On the structure and excited electronic state lifetimes of cytidine self-assemblies with extended hydrogen-bonding networks, J. Photochem. Photobiol., A, 2009, 208, 164–170.

    Article  CAS  Google Scholar 

  39. V. Karunakaran, K. Kleinermanns, R. Improta, S. A. Kovalenko, Photoinduced dynamics of guanosine monophosphate in water from broad-band transient absorption spectroscopy and quantum-chemical calculations, J. Am. Chem. Soc., 2009, 131, 5839–5850.

    Article  CAS  PubMed  Google Scholar 

  40. J.-M. L. Pecourt, J. Peon, B. Kohler, DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides, J. Am. Chem. Soc., 2001, 123, 10370–10378.

    Article  CAS  PubMed  Google Scholar 

  41. W. G. Rothschild, G. J. Rosasco, R. C. Livingston, Dynamics of molecular reorientational motion and vibrational relaxation in liquids. Chloroform, J. Chem. Phys., 1975, 62, 1253–1268.

    Article  CAS  Google Scholar 

  42. H. Graener, G. Seifert, Vibrational and orientational relaxation of monomeric water molecules in liquids, J. Chem. Phys., 1993, 98, 36–45.

    Article  CAS  Google Scholar 

  43. H. Graener, R. Zürl, M. Hofmann, Vibrational relaxation of liquid chloroform, J. Phys. Chem. B, 1997, 101, 1745–1749.

    Article  CAS  Google Scholar 

  44. E. L. Sibert, R. Rey, Vibrational relaxation in liquid chloroform following ultrafast excitation of the CH stretch fundamental, J. Chem. Phys., 2002, 116, 237–257.

    Article  CAS  Google Scholar 

  45. H. Graener, R. Zürl, M. Bartel, G. Seifert, Thermalization of vibrational excess energy in liquid chloroform, J. Mol. Liq., 2000, 84, 161–168.

    Article  CAS  Google Scholar 

  46. F.-A. Miannay, T. Gustavsson, A. Banyasz, D. Markovitsi, Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy, J. Phys. Chem. A, 2010, 114, 3256–3263.

    Article  CAS  PubMed  Google Scholar 

  47. L. Serrano-Andrés, M. Merchán, A. C. Borin, A three-state model for the photophysics of guanine, J. Am. Chem. Soc., 2008, 130, 2473–2484.

    Article  PubMed  CAS  Google Scholar 

  48. S. Yamazaki, W. Domcke, Ab initio studies on the photophysics of guanine tautomers: out-of-plane deformation and NH dissociation pathways to conical intersections, J. Phys. Chem. A, 2008, 112, 7090–7097.

    Article  CAS  PubMed  Google Scholar 

  49. S. Yamazaki, W. Domcke, A. L. Sobolewski, Nonradiative decay mechanisms of the biologically relevant tautomer of guanine, J. Phys. Chem. A, 2008, 112, 11965–11968.

    Article  CAS  PubMed  Google Scholar 

  50. L. Serrano-Andrés, M. Merchán, Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective, J. Photochem. Photobiol., C, 2009, 10, 21–32.

    Article  CAS  Google Scholar 

  51. Z. Lan, E. Fabiano, W. Thiel, Photoinduced nonadiabatic dynamics of 9 H-guanine, ChemPhysChem, 2009, 10, 1225–1229.

    Article  CAS  PubMed  Google Scholar 

  52. M. Barbatti, J. J. Szymczak, A. J. A. Aquino, D. Nachtigallová, H. Lischka, The decay mechanism of photoexcited guanine - a nonadiabatic dynamics study, J. Chem. Phys., 2011, 134, 014304.

    Article  PubMed  CAS  Google Scholar 

  53. B. Heggen, Z. Lan, W. Thiel, Nonadiabatic decay dynamics of 9 H-guanine in aqueous solution, Phys. Chem. Chem. Phys., 2012, 14, 8137–8146.

    Article  CAS  PubMed  Google Scholar 

  54. C. C.-W. Cheng, C. Ma, C. T.-L. Chan, K. Y.-F. Ho, W.-M. Kwok, The solvent effect and identification of a weakly emissive state in nonradiative dynamics of guanine nucleosides and nucleotides - a combined femtosecond broadband time-resolved fluorescence and transient absorption study, Photochem. Photobiol. Sci., 2013. 10.1039/C3PP25450J

    Google Scholar 

  55. K. Hunger, L. Buschhaus, L. Biemann, M. Braun, S. Kovalenko, R. Improta, K. Kleinermanns, UV light-induced hydrogen transfer in guanosine-guanosine aggregates, Chem.-Eur. J., 2013, 19, 5425–5431.

    Article  CAS  PubMed  Google Scholar 

  56. T. Zelený, M. Ruckenbauer, A. J. A. Aquino, T. Müller, F. Lankaš, T. Dršata, W. L. Hase, D. Nachtigallova, H. Lischka, Strikingly different effects of hydrogen bonding on the photodynamics of individual nucleobases in DNA: comparison of guanine and cytosine, J. Am. Chem. Soc., 2012, 134, 13662–13669.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Temps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röttger, K., Sönnichsen, F.D. & Temps, F. Ultrafast electronic deactivation dynamics of the inosine dimer — a model case for H-bonded purine bases. Photochem Photobiol Sci 12, 1466–1473 (2013). https://doi.org/10.1039/c3pp50093d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50093d

Navigation