Issue 4, 2014

Homogeneous near-infrared emissive polymeric nanoparticles based on amphiphilic diblock copolymers with perylene diimide and PEG pendants: self-assembly behavior and cellular imaging application

Abstract

An amphiphilic diblock copolymer, poly(perylene diimide acrylate)-block-poly(poly(ethyleneglycol)methacrylate) (PPDA-b-P(PEGMA)), has been synthesized via the reversible addition fragmentation transfer polymerization (RAFT) method. The polymer shows self-assembly behavior in water due to the synergistic effects of the strong hydrophobic interactions and π–π stacking of perylene diimide (PDI) groups. Homogeneous polymer nanoparticles (PNPs) in aqueous solution with good water solubility and stability were formed with an average size of 64.3 ± 3.3 nm, revealed by dynamic light scattering (DLS). The PNPs showed near-infrared (NIR) emission at 660 nm instead of the traditional emission of individual PDI groups at 530 nm. The aggregation-enhanced π–π stacking and the resulting NIR emission of the PDI groups were demonstrated by spectroscopy and 1H-NMR characterization. Cellular imaging of human pancreatic cancer cells was conducted with the obtained PNPs. Confocal microscopy results showed that the PNPs were located specifically within the cell cytoplasm. This study provides a new design concept to take full advantage of polymer amphipathy to fabricate nanoparticles with NIR emission for applications in bio-imaging.

Graphical abstract: Homogeneous near-infrared emissive polymeric nanoparticles based on amphiphilic diblock copolymers with perylene diimide and PEG pendants: self-assembly behavior and cellular imaging application

Article information

Article type
Paper
Submitted
01 Sep 2013
Accepted
17 Oct 2013
First published
18 Oct 2013

Polym. Chem., 2014,5, 1372-1380

Homogeneous near-infrared emissive polymeric nanoparticles based on amphiphilic diblock copolymers with perylene diimide and PEG pendants: self-assembly behavior and cellular imaging application

Z. Yang, Y. Yuan, R. Jiang, N. Fu, X. Lu, C. Tian, W. Hu, Q. Fan and W. Huang, Polym. Chem., 2014, 5, 1372 DOI: 10.1039/C3PY01197F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements