Issue 34, 2013

Water oxidation catalysis via immobilization of the dimanganese complex [Mn2(μ-O)2Cl(μ-O2CCH3)(bpy)2(H2O)](NO3)2 onto silica

Abstract

Adsorption of a dinuclear μ-oxo bridged Mn complex onto mesoporous silica was observed when SBA15 was treated with an acetonitrile solution of [Mn2(μ-O)2Cl(μ-O2CCH3)(H2O)(bpy)2](NO3)2 (1). This complex was immobilized via the displacement of NO3 into solution, and characterization by spectroscopic (DRIFTS and DRUV-vis) and magnetic data indicates that the intact dication is electrostatically bound to the silica surface. Loadings of up to 4.1% by weight of [Mn2(μ-O)2Cl(μ-O2CCH3)(H2O)(bpy)2]2+ were achieved. TEM images of the grafted material revealed retention of the mesoporous structure of SBA15, and no clusters of manganese greater than ca. 10 nm were observed. The SBA15-supported dimanganese complex functions as a catalyst for the oxidation of H2O with (NH4)2Ce(NO3)6 as stoichiometric oxidant. In contrast, homogenous aqueous solutions of 1 do not evolve oxygen upon treatment with (NH4)2Ce(NO3)6. Labeling studies with H218O confirm that the oxygen formed in this catalysis is derived from water. Monitoring the O2 evolution allowed determination of an initial rate for the catalysis (TOFi = 1.1 × 10−3 s−1). These studies also reveal a first order dependence on manganese surface concentration, and a zero order rate dependence for (NH4)Ce(NO3)6. Spectroscopic investigations were employed to investigate the difference in activities between dissolved and supported dimanganese complexes.

Graphical abstract: Water oxidation catalysis via immobilization of the dimanganese complex [Mn2(μ-O)2Cl(μ-O2CCH3)(bpy)2(H2O)](NO3)2 onto silica

Supplementary files

Article information

Article type
Paper
Submitted
03 Jun 2013
Accepted
10 Jul 2013
First published
12 Jul 2013

Dalton Trans., 2013,42, 12238-12247

Water oxidation catalysis via immobilization of the dimanganese complex [Mn2(μ-O)2Cl(μ-O2CCH3)(bpy)2(H2O)](NO3)2 onto silica

E. M. W. Rumberger, H. S. Ahn, A. T. Bell and T. D. Tilley, Dalton Trans., 2013, 42, 12238 DOI: 10.1039/C3DT51472B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements