Skip to main content
Log in

Excited-state properties of chiral [4]helicene cations

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysical properties of a series of helicene cations in various solvents have been investigated using stationary and time-resolved spectroscopy. These compounds fluoresce in the near infrared region with a quantum yield ranging between 2 and 20% and a lifetime between 1 and 12 ns, depending of the solvent. No clear solvent dependence could be recognized except for a decrease of fluorescence quantum yield and lifetime with increasing hydrogen-bond donating ability of the solvent. In water, the helicene cations undergo aggregation. This effect manifests itself by the presence of a slow fluorescence decay component, whose amplitude increases with dye concentration, and by a much slower decay of the polarization anisotropy in water compared to an organic solvent of similar viscosity. However, aggregation has essentially no effect on the stationary fluorescence spectrum, whereas relatively small changes can be seen in the absorption spectrum. Analysis of the dependence of aggregation on the dye concentration reveals that the aggregates are mostly dimers and that the aggregation constant is substantially larger for hetero- than homochiral dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. R. W. Sinkeldam, N. J. Greco, Y. Tor, Fluorescent analogs of biomolecular building blocks: design, properties, and applications, Chem. Rev., 2010, 110, 2579–2619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. L. Amiot, S. Xu, S. Liang, L. Pan, J. X. Zhao, Near-infrared fluorescent materials for sensing of biological targets, Sensors, 2008, 8, 3082–3105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 2003, 7, 626–634.

    Article  CAS  PubMed  Google Scholar 

  4. X. He, J. Gao, S. S. Gambhir, Z. Cheng, Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges, Trends Mol. Med., 2010, 16, 574–583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. R. Weissleder, C.-H. Tung, U. Mahmood, A. Bogdanov, Jr., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. Biotechnol., 1999, 17, 375–378.

    Article  CAS  PubMed  Google Scholar 

  6. S. A. Soper, Q. L. Mattingly, P. Vegunta, Photon burst detection of single near-infrared fluorescent molecules, Anal. Chem., 1993, 65, 740–747.

    Article  CAS  Google Scholar 

  7. B. W. Laursen, F. C. Krebs, Synthesis of a triazatriangulenium salt, Angew. Chem., Int. Ed., 2000, 39, 3432–3434.

    Article  CAS  Google Scholar 

  8. B. W. Laursen, F. C. Krebs, Synthesis, structure, and properties of azatriangulenium salts, Chem.–Eur. J., 2001, 7, 1773–1783.

    Article  CAS  PubMed  Google Scholar 

  9. C. Herse, D. Bas, F. C. Krebs, T. Bürgi, J. Weber, T. Wesolowski, B. W. Laursen, J. Lacour, A highly configurationally stable (4)heterohelicenium cation, Angew. Chem., Int. Ed., 2003, 42, 3162.

    Article  CAS  Google Scholar 

  10. B. Laleu, P. Mobian, C. Herse, B. W. Laursen, G. Hopfgartner, G. Bernardinelli, J. Lacour, Resolution of [4]heterohelicenium dyes with unprecedented Pummerer-like chemistry, Angew. Chem., Int. Ed., 2005, 44, 1879–1883.

    Article  CAS  Google Scholar 

  11. P. Mobian, N. Banerji, G. Bernardinelli, J. Lacour, Towards the stereoselective synthesis of inherently chiral pseudorotaxanes, Org. Biomol. Chem., 2006, 4, 224–231.

    Article  CAS  PubMed  Google Scholar 

  12. C. Villani, B. Laleu, P. Mobian, J. Lacour, Effective HPLC resolution of [4]heterohelicenium dyes on chiral stationary phases using reversed phase eluents, Chirality, 2007, 19, 601–606.

    Article  CAS  PubMed  Google Scholar 

  13. D. Conreaux, N. Mehanna, C. Herse, J. Lacour, From cationic to anionic helicenes: new reactivity through umpolung, J. Org. Chem., 2011, 76, 2716–2722.

    Article  CAS  PubMed  Google Scholar 

  14. N. Mehanna, S. Grass, J. Lacour, On the surprising loss of chromatographic separation on silica gel of [4]helicene sulfoxide diastereoisomers upon increasing compound polarity, Chirality, 2011 submitted.

    Google Scholar 

  15. T. J. Wigglesworth, D. Sud, T. B. Norsten, V. S. Lekhi, N. R. Branda, Chiral discrimination in photochromic helicenes, J. Am. Chem. Soc., 2005, 127, 7272–7273.

    Article  CAS  PubMed  Google Scholar 

  16. T. Okuyama, Y. Tani, K. Miyake, Y. Yokoyama, Chiral helicenoid diarylethene with large change in specific optical rotation by photochromism, J. Org. Chem., 2007, 72, 1634–1638.

    Article  CAS  PubMed  Google Scholar 

  17. B. Busson, A. Tadjeddine, Chiral specificity of doubly resonant sum-frequency generation in an anisotropic thin film, J. Phys. Chem. C, 2008, 112, 11813–11821.

    Article  CAS  Google Scholar 

  18. F. Furche, R. Ahlrichs, C. Wachsmann, E. Weber, A. Sobanski, F. Voegtle, S. Grimme, Circular dichroism of helicenes investigated by time-dependent density functional theory, J. Am. Chem. Soc., 2000, 122, 1717–1724.

    Article  CAS  Google Scholar 

  19. J. Autschbach, T. Ziegler, S. J. A. Van Gisbergen, E. J. Baerends, Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules, J. Chem. Phys., 2002, 116, 6930–6940.

    Article  CAS  Google Scholar 

  20. E. Botek, J.-M. Andre, B. Champagne, T. Verbiest, A. Persoons, Mixed electric–magnetic second-order nonlinear optical response of helicenes, J. Chem. Phys., 2005, 122, 234713–234716.

    Article  PubMed  CAS  Google Scholar 

  21. J. Guin, C. Besnard, J. Lacour, Synthesis, resolution, and stabilities of a cationic chromenoxanthene [4]helicene, Org. Lett., 2010, 12, 1748–1751.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Xu, Y. X. Zhang, H. Sugiyama, T. Umano, H. Osuga, K. Tanaka, (P)-Helicene displays chiral selection in binding to Z-DNA, J. Am. Chem. Soc., 2004, 126, 6566–6567.

    Article  CAS  PubMed  Google Scholar 

  23. S. Honzawa, H. Okubo, S. Anzai, M. Yamaguchi, K. Tsumoto, I. Kumagai, Chiral recognition in the binding of helicenediamine to double strand DNA: interactions between low molecular weight helical compounds and a helical polymer, Bioorg. Med. Chem., 2002, 10, 3213–3218.

    Article  CAS  PubMed  Google Scholar 

  24. R. Passeri, A. G. Gaetano, F. Elisei, L. Latterini, T. Caronna, F. Fontana, S. I. Natali, Photophysical properties of N-alkylated azahelicene derivatives as DNA intercalators: counterion effects, Photochem. Photobiol. Sci., 2009, 8, 1574–1582.

    Article  CAS  PubMed  Google Scholar 

  25. V. A. Bloomfield, D. M. Crothers and I. Tinoco, Jr., Nucleic Acids: Structures, Properties and Functions, University Science Books, 2000.

    Google Scholar 

  26. M. A. Shcherbina, X.-b. Zeng, T. Tadjiev, G. Ungar, S. H. Eichhorn, K. E. S. Phillips, T. J. Katz, Hollow six-stranded helical columns of a helicene, Angew. Chem., Int. Ed., 2009, 48, 7837–7840.

    Article  CAS  Google Scholar 

  27. K. E. S. Phillips, T. J. Katz, S. Jockusch, A. J. Lovinger, N. J. Turro, Synthesis and properties of an aggregating heterocyclic helicene, J. Am. Chem. Soc., 2001, 123, 11899–11907.

    Article  CAS  PubMed  Google Scholar 

  28. R. E. Franklin, R. G. Gosling, Molecular configuration in sodium thymonucleate, Nature, 1953, 171, 740–741.

    Article  CAS  PubMed  Google Scholar 

  29. S. Machida, K. Sano, K. Sunohara, Y. Kawata, Y. Mori, The novel texture of a liquid crystal induced by poly-benzyl-l-glutamate chemical reaction alignment (CRA) film, J. Chem. Soc., Chem. Commun., 1992, 1628–1629.

    Google Scholar 

  30. J. R. C. Van der Maarel, D. E. Woessner, M. E. Merritt, Extremely slow counterion dynamics in xanthan liquid crystal through23Na and14N NMR, J. Phys. Chem. B, 2002, 106, 3864–3871.

    Article  CAS  Google Scholar 

  31. Z. An, Y. Yasui, T. Togashi, T. Adschiri, S. Hitosugi, H. Isobe, T. Higuchi, M. Shimomura, M. Yamaguchi, Reversible aggregation and deaggregation of helicene-grafted chiral silica nanoparticles induced by aromatic solvents, Chem. Lett., 2010, 39, 1004–1005.

    Article  CAS  Google Scholar 

  32. K. Nakamura, H. Okubo, M. Yamaguchi, Synthesis and self-aggregation of cyclic alkynes containing helicene, Org. Lett., 2001, 3, 1097–1099.

    Article  CAS  PubMed  Google Scholar 

  33. N. Fukawa, T. Osaka, K. Noguchi, K. Tanaka, Asymmetric synthesis and photophysical properties of benzopyrano- or naphthopyrano-fused helical phosphafluorenes, Org. Lett., 2010, 12, 1324–1327.

    Article  CAS  PubMed  Google Scholar 

  34. S. Abbate, T. Caronna, A. Longo, A. Ruggirello, L. V. Turco, Study of confined 5-aza[5]helicene in ytterbium(iii) bis(2-ethylhexyl) sulfosuccinate reversed micelles, J. Phys. Chem. B, 2007, 111, 4089–4097.

    Article  CAS  PubMed  Google Scholar 

  35. H. Görner, C. Stammel, J. Mattay, Excited state behavior of pentahelicene dinitriles, J. Photochem. Photobiol., A, 1999, 120, 171–179.

    Article  Google Scholar 

  36. M. Sapir, D. E. Vander, Intersystem crossing in the helicenes, Chem. Phys. Lett., 1975, 36, 108–110.

    Article  CAS  Google Scholar 

  37. K. Schmidt, S. Brovelli, V. Coropceanu, D. Beljonne, J. Cornil, C. Bazzini, T. Caronna, R. Tubino, F. Meinardi, Z. Shuai, J.-L. Bredas, Intersystem crossing processes in nonplanar aromatic heterocyclic molecules, J. Phys. Chem. A, 2007, 111, 10490–10499.

    Article  CAS  PubMed  Google Scholar 

  38. B. W. Laursen, PhD thesis, 2001, Risø National Laboratory and University of Copenhagen.

  39. G. Solladie, J. Hutt, A. Girardin, Improved preparation of optically active methyl p-tolyl sulfoxide, Synthesis, 1987, 173.

    Google Scholar 

  40. M. C. Carreño, Applications of sulfoxides to asymmetric synthesis of biologically active compounds, Chem. Rev., 1995, 95, 1717–1760.

    Article  Google Scholar 

  41. R. Sens, K. H. Drexhage, Fluorescence quantum yield of oxazine and carbazine laser dyes, J. Lumin., 1981, 24–25, 709–712.

    Article  Google Scholar 

  42. A. Fürstenberg, E. Vauthey, Excited state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions in heterogeneous media, Photochem. Photobiol. Sci., 2005, 4, 260–267.

    Article  PubMed  Google Scholar 

  43. A. Morandeira, L. Engeli, E. Vauthey, Ultrafast charge recombination of photogenerated ion pairs to an electronic excited state, J. Phys. Chem. A, 2002, 106, 4833–4837.

    Article  CAS  Google Scholar 

  44. G. Duvanel, J. Grilj, H. Chaumeil, P. Jacques, E. Vauthey, Ultrafast excited-state dynamics of a series of zwitterionic pyridinium phenoxides with increasing sterical hindering, Photochem. Photobiol. Sci., 2010, 9, 908–915.

    Article  CAS  PubMed  Google Scholar 

  45. G. Duvanel, N. Banerji, E. Vauthey, Excited-state dynamics of donor–acceptor bridged systems containing a boron-dipyrromethene chromophore: interplay between charge separation and reorientational motion, J. Phys. Chem. A, 2007, 111, 5361–5369.

    Article  CAS  PubMed  Google Scholar 

  46. N. Banerji, G. Duvanel, A. Perez-Velasco, S. Maity, N. Sakai, S. Matile, E. Vauthey, Excited-state dynamics of hybrid multichromophoric systems: toward an excitation wavelength control of the charge separation pathways, J. Phys. Chem. A, 2009, 113, 8202–8212.

    Article  CAS  PubMed  Google Scholar 

  47. J. P. Perdew, Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 1986, 33, 8822–8824.

    Article  CAS  Google Scholar 

  48. A. Schäfer, H. Horn, R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to K, J. Chem. Phys., 1992, 97, 2571–2577.

    Article  Google Scholar 

  49. R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory, Chem. Phys. Lett., 1996, 256, 454–464.

    Article  CAS  Google Scholar 

  50. R. Ahlrichs, M. Bär, M. Häser, Electronic structure calculations on workstation computers: the program system turbomole, Chem. Phys. Lett., 1989, 162, 165–169.

    Article  CAS  Google Scholar 

  51. N. Mehanna, PhD thesis, 2010, University of Geneva.

  52. T. Förster, Electron spectra of coupled molecules, Pure Appl. Chem., 1962, 4, 121–134.

    Article  Google Scholar 

  53. J. B. Birks, Excimers, Rep. Prog. Phys., 1975, 38, 903–974.

    Article  CAS  Google Scholar 

  54. P. Suppan and N. Ghoneim, Solvatochromism, The Royal Society of Chemistry, Cambridge, 1997.

    Google Scholar 

  55. S. R. Flom, P. F. Barbara, Proton transfer and hydrogen bonding in the internal conversion of S1 anthraquinones, J. Phys. Chem., 1985, 89, 4489–4494.

    Article  CAS  Google Scholar 

  56. H. Inoue, M. Hida, N. Nakashima, K. Yoshihara, Picosecond fluorescence lifetimes of anthraquinone derivatives. Radiationless deactivation via intra- and intermolecular hydrogen bonds, J. Phys. Chem., 1982, 86, 3184–3188.

    Article  CAS  Google Scholar 

  57. P. S. Sherin, J. Grilj, Y. P. Tsentalovitch, E. Vauthey, Ultrafast excited-state dynamics of kynurenine, a UV filter of the human eye, J. Phys. Chem. B, 2009, 113, 4953–4962.

    Article  CAS  PubMed  Google Scholar 

  58. P. Fita, M. Fedoseeva, E. Vauthey, Ultrafast excited-state dynamics of eosin B: a potential probe of the hydrogen-bonding properties of the environment, J. Phys. Chem. A, 2011, 115, 2465–2470.

    Article  CAS  PubMed  Google Scholar 

  59. A. Penzkofer, Y. Lu, Fluorescence quenching of rhodamine 6G in methanol at high concentration, Chem. Phys., 1986, 103, 399–405.

    Article  CAS  Google Scholar 

  60. O. Valdes-Aguilera, D. C. Neckers, Aggregation phenomena in xanthene dyes, Acc. Chem. Res., 1989, 22, 171–177.

    Article  CAS  Google Scholar 

  61. P. Fita, M. Fedoseeva, E. Vauthey, Hydrogen-bond-assisted excited-state deactivation at liquid/water interfaces, Langmuir, 2011, 27, 4645–4652.

    Article  CAS  PubMed  Google Scholar 

  62. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York, 1986.

    Google Scholar 

  63. N. Sarkar, S. Takeuchi, T. Tahara, Vibronic relaxation of polyatomic molecule in nonpolar solvent: femtosecond anisotropy/intensity measurements of the Sn and S1 fluorescence of tetracene, J. Phys. Chem. A, 1999, 103, 4808–4814.

    Article  CAS  Google Scholar 

  64. A. Pigliucci, G. Duvanel, M. L. Lawson Daku, E. Vauthey, Investigation of the influence of solute–solvent interactions on the vibrational energy relaxation dynamics of large molecules in liquids, J. Phys. Chem. A, 2007, 111, 6135–6145.

    Article  CAS  PubMed  Google Scholar 

  65. E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley, 1994.

    Google Scholar 

  66. M. Kasha, H. R. Rawls, M. A. El-Bayoumi, The exciton model in molecular spectroscopy, Pure Appl. Chem., 1965, 11, 371–392.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jérome Lacour or Eric Vauthey.

Additional information

† Electronic supplementary information (ESI) available: Synthesis of HelOH, absorption and emission spectra of HelPr in CHCl3 at different concentrations, and fluorescence decays of HelPr in CHCl3 at different wavelengths. See DOI: 10.1039/c2pp05361f

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kel, O., Sherin, P., Mehanna, N. et al. Excited-state properties of chiral [4]helicene cations. Photochem Photobiol Sci 11, 623–631 (2012). https://doi.org/10.1039/c2pp05361f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp05361f

Navigation