Skip to main content
Log in

Microwave discharge electrodeless lamps (MDEL)

Part VII. Photo-isomerization of trans-urocanic acid in aqueous media driven by UV light from a novel Hg-free Dewar-like microwave discharge thermally-insulated electrodeless lamp (MDTIEL). Performance evaluation

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel mercury-free Dewar-like (double-walled structure) microwave discharge thermally-insulated electrodeless lamp (MDTIEL) was fabricated and its performance evaluated using the photo-isomerization of trans-urocanic acid (trans-UA) in aqueous media as a test process driven by the emitted UV light when ignited with microwave radiation. The photo-isomerization processes trans-UA → cis-UA and cis-UA → trans-UA were re-visited using light emitted from a conventional high-pressure Hg light source and examined for the influence of UV light irradiance and solution temperature; the temperature dependence of the transcis process displayed a negative activation energy, Ea = -1.3 cal mol−1. To control the photo-isomerization of urocanic acid from the heat usually dissipated by a microwave discharge electrodeless lamp (single-walled MDEL), it was necessary to suppress the microwave-initiated heat. For comparison, the gas-fill in the MDEL lamp, which typically consists of a mixture of Hg and Ar, was changed to the more eco-friendly N2 gas in the novel MDTIEL device. The dynamics of the photo-isomerization of urocanic acid driven by the UV wavelengths of the N2-MDTIEL light source were compared to those from the more conventional single-walled N2-MDEL and Hg/Ar-MDEL light sources, and with those from the Hg lamp used to irradiate, via a fiber optic, the photoreactor located in the wave-guide of the microwave apparatus. The heating efficiency of a solution with the double-walled N2-MDTIEL was compared to the efficiency from the single-walled N2-MDEL device. Advantages of N2-MDTIEL are described from a comparison of the dynamics of the trans-UA → cis-UA process on the basis of unit surface area of the lamp and unit power consumption. The considerably lower temperature on the external surface of the N2-MDTIEL light source should make it attractive in carrying out photochemical reactions that may be heat-sensitive such as the photothermochromic urocanic acid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Horikoshi, M. Abe and N. Serpone, Novel designs of microwave discharge electrodeless lamps (MDEL) in photochemical applications. Use in advanced oxidation processes, Photochem. Photobiol. Sci., 2009, 8, 1087–1104.

    Article  CAS  PubMed  Google Scholar 

  2. P. Kla´n and V. C´ırkva, in Microwaves in Organic Synthesis, A. Loupy (Ed.), Wiley-VCH Verlag, Weinheim, Germany, Chapter 19, 2006, pp. 860–897.

  3. W. J. Leigh, Techniques and applications of far-UV photochemistry in solution. The photochemistry of the C3H4 and C4H6 hydrocarbons, Chem. Rev., 1993, 93, 487–505.

    Article  CAS  Google Scholar 

  4. Y. Takahashi, T. Sakakibara, T. Tominaga, M. Inaba and H. Tomioka, New facets in the photochemistry and thermal reaction of 2,2-diphenylmethylenecyclopropane, J. Photochem. Photobiol., A, 2007, 185, 253–262.

    Article  CAS  Google Scholar 

  5. R. Heiligman-Rim, Y. Hirshberg and E. Fischer, Photochromism in spiropyrans. Part V. On the mechanism of phototransformtion, J. P hy s. Chem., 1962, 66, 2470–2477.

    Article  CAS  Google Scholar 

  6. S. Horikoshi, A. Osawa, Y. Suttisawat, M. Abe and N. Serpone, A novel Dewar-like reactor for maintaining constant heat and enhancing product yields during microwave-assisted organic syntheses, Org. Process Res. Dev., 2010, 14, 1453–1456.

    Article  CAS  Google Scholar 

  7. S. Horikoshi, M. Kajitani, S. Sato and N. Serpone, A novel environmental risk-free microwave discharge electrodeless lamp (MDEL) in advanced oxidation processes. Degradation of the 2,4-D herbicide, J. Photochem. Photobiol., A, 2007, 189, 355–363.

    Article  CAS  Google Scholar 

  8. S. E. Ullrich, Sunlight and skin cancer: Lessons from the immune system, Mol. Carcinog., 2007, 46, 629–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. Kaneko, U. Smetana-Just, M. Matsui, A. R. Young, S. John, M. Norval and S. L. Walker, cis-Urocanic Acid Initiates Gene Transcription in Primary Human Keratinocytes, J. Immunol., 2008, 181, 217–224.

    Article  CAS  PubMed  Google Scholar 

  10. N. K. Gibbs and M. Norval, Urocanic Acid in the Skin: A Mixed Blessing?, J. Invest. Dermatol., 2011, 131, 14–17.

    Article  CAS  PubMed  Google Scholar 

  11. M. Norval and P. McLoone, The Effect of Chronic Ultraviolet Radiation on the Human Immune System, Photochem. Photobiol., 2007, 84, 19–28.

    Article  CAS  Google Scholar 

  12. J. P. Walterscheid, D. X. Nghiem, N. Kazimi, L. K. Nutt, D. J. McConkey, M. Norval and S. E. Ullrich, Cis-urocanic acid, a sunlightinduced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 17420–17425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. L. Kripke, P. A. Cox, L. G. Alas and D. B. Yarosh, Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice, Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 7516–7520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. E. C. De Fabo and F. P. Noonan, Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology, J. Exp. Med., 1983, 158, 84–98.

    Article  PubMed  Google Scholar 

  15. M. Rinaldi, P. Moroni, L. Lieno, J. Laihia, M. J. Paape and D. D. Bannerman, Effect of cis-urocanic acid on bovine neutrophil generation of reactive oxygen species, J. Dairy Sci., 2006, 89, 4188–4201.

    Article  CAS  PubMed  Google Scholar 

  16. N. Haralampus-Grynaviski, C. Ransom, T. Ye, M. Rôżanowska, M. Wrona, T. Sarna and J. D. Simon, Photogeneration and Quenching of Reactive Oxygen Species by Urocanic Acid, J. Am. Chem. Soc., 2002, 124, 3461–3468.

    Article  CAS  PubMed  Google Scholar 

  17. H. P. Baden and M. A. Pathak, The Metabolism and Function of Urocanic Acid in Skin, J. Invest. Dermatol., 1967, 48, 11–17.

    Article  CAS  PubMed  Google Scholar 

  18. O. F. de Fine, H. C. Wulf, J. Crosby and M. Norval, The sunscreening effect of urocanic acid, Photodermatol. Photoimmunol. Photomed., 1996, 12, 93–99.

    Google Scholar 

  19. G. Kavanagh, J. Crosby and M. Norval, Urocanic acid isomers in human skin: Analysis of site variation, Br. J. Dermatol., 1995, 133, 728–731.

    Article  CAS  PubMed  Google Scholar 

  20. O. F. de Fine, H. C. Wulf, P. Therkildsen, T. Poulsen, J. Crosby and M. Norval, Urocanic acid isomers: Relation to body site, pigmentation, stratum corneum thickness and photosensitivity, Arch. Dermatol. Res., 1997, 289, 501–505.

    Article  Google Scholar 

  21. J. K. Laihia, M. Attila, K. Neuvonen, P. Pasanen, L. Tuomisto and C. T. Jansen, Urocanic Acid Binds to GABA but not to Histamine (H1, H2, or H3) Receptors, J. Invest. Dermatol., 1998, 111, 705–706.

    Article  CAS  PubMed  Google Scholar 

  22. N. K. Gibbs, J. Tye and M. Norval, Recent advances in urocanic acid photochemistry, photobiology and photoimmunology, Photochem. Photobiol. Sci., 2008, 7, 655–667.

    Article  CAS  PubMed  Google Scholar 

  23. K. Shibata and T. Fukuwatari, Nutrition biochemical studies on increase in natural sunscreen agents, The Progress Report of Ground Research Announcement for Space Utilization, National Space Development Agency of Japan (NASDA), 1999, pp. 619–621.

    Google Scholar 

  24. J. D. Roberts, C. Yu, C. Flanagan and T. R. Birdseye, A nitrogen-15 nuclear magnetic resonance study of the acid-base and tautomeric equilibriums of 4-substituted imidazoles and its relevance to the catalytic mechanism of a-lytic protease, J. Am. Chem. Soc., 1982, 104, 3945–3949.

    Article  CAS  Google Scholar 

  25. A. H. Mehler and H. Tabor, Deamination of Histidine to Form Urocanic Acid in Liver, J. Biol. Chem., 1953, 201, 775–784.

    Article  CAS  PubMed  Google Scholar 

  26. ULVAC Inc., Vacuum handbook, Ohmsha, Ltd., Japan, 1992, 132–148.

    Google Scholar 

  27. S. Horikoshi, A. Tsuchida, H. Sakai, M. Abe, S. Sato and N. Serpone, Microwave discharge electrodeless lamps (MDEL) Part IV. Novel selfignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions, Photochem. Photobiol. Sci., 2009, 8, 1618–1625.

    Article  CAS  PubMed  Google Scholar 

  28. H. Morrison, C. Bernasconi and G. Pandey, A Wavelength Effect on Urocanic Acid E/Z Photoisomerization, Photochem. Photobiol., 1984, 40, 549–550.

    Article  CAS  PubMed  Google Scholar 

  29. T. Mohammad, H. Morrison and H. HogenEsch, Urocanic Acid Photochemistry and Photobiology, Photochem. Photobiol., 1999, 69, 115–135.

    Article  CAS  PubMed  Google Scholar 

  30. M. K. Shukla and P. C. Mishra, Electronic spectra, structure, and photoisomerization of urocanic acid, Spectrochim. Acta, Part A, 1995, 51, 831–838.

    Article  Google Scholar 

  31. K. M. Hanson, B. Li and J. D. Simon, A Spectroscopic Study of the Epidermal Ultraviolet Chromophore trans-Urocanic Acid, J. Am. Chem. Soc., 1997, 119, 2715–2721.

    Article  CAS  Google Scholar 

  32. B. Li, K. M. Hanson and J. D. Simon, Primary Processes of the Electronic Excited States of trans-Urocanic Acid, J. Phys. Chem. A, 1997, 101, 969–972.

    Article  CAS  Google Scholar 

  33. K. M. Hanson and J. D. Simon, The Origin of the Wavelength-Dependent Photoreactivity of trans-Urocanic Acid, Photochem. Photobiol., 1998, 67, 538–540.

    Article  CAS  PubMed  Google Scholar 

  34. H. Morrison, D. Avnir, C. Bernasconi and G. Fagan, Z/E Phootoisomerization of Urocanic Acid, Photochem. Photobiol., 1980, 32, 711–714.

    Article  CAS  Google Scholar 

  35. H. Morrison, D. Avnir and T. Zarrella, Analysis of Z and E isomers of urocanic acid by high-performance liquid chromatography, J. Chromatogr., Biomed. Appl., 1980, 183, 83–86.

    Article  CAS  Google Scholar 

  36. L. P. Olson, K. T. Kuwata, M. D. Bartberger and K. N. Houk, Conformation-Dependent State Selectivity in O-O Cleavage of ONOONO: An “Inorganic Cope Rearrangement” Helps Explain the Observed Negative Activation Energy in the Oxidation of Nitric Oxide by Dioxygen, J. Am. Chem. Soc., 2002, 124, 9469–9475.

    Article  CAS  PubMed  Google Scholar 

  37. U. Pischel and W. M. Nau, Switch-Over in Photochemical Reaction Mechanism from Hydrogen Abstraction to Exciplex-Induced Quenching: Interaction of Triplet-Excited versus Singlet-Excited Acetone versus Cumyloxyl Radicals with Amines, J. Am. Chem. Soc., 2001, 123, 9727–9737.

    Article  CAS  PubMed  Google Scholar 

  38. S. R. L. Fernando, U. S. M. Maharoof, K. D. Deshayes, T. H. Kinstle and M. Y. Ogawa, A Negative Activation Energy for Luminescence Decay: Specific Solvation Effects on the Emission Properties of Bis(2,2¢-bipyridine)(3,5-dicarboxy-2,2¢-bipyridine)ruthenium(II) Chloride, J. Am. Chem. Soc., 1996, 118, 5783–5790.

    Article  CAS  Google Scholar 

  39. K. Ohkubo and S. Fukuzumi, Electron-Transfer Oxidation of Coenzyme B12 Model Compounds and Facile Cleavage of the Cobalt(IV)-Carbon Bond via Charge-Transfer Complexes with Bases. A Negative Temperature Dependence of the Rates, J. Phys. Chem. A, 2005, 109, 1105–1113.

    Article  CAS  PubMed  Google Scholar 

  40. A. Ranatunga, R. C. Lasey and M. Y. Ogawa, The localization of hydrophilic sites within an osmium polypyridyl compound can produce a negative activation energy for emission decay, Inorg. Chem. Commun., 2001, 4, 30–32.

    Article  CAS  Google Scholar 

  41. K. V. Kiselev and J. G. Miller, Experimental proof that the Diels-Alder reaction of tetracyanoethylene with 9,10-dimethylanthracene passes through formation of a complex between the reactants, J. Am. Chem. Soc., 1975, 97, 4036–4039.

    Article  CAS  Google Scholar 

  42. K. M. Zaman, S. Yamamoto, N. Nishimura, J. Maruta and S. Fukuzumi, Charge-Transfer Complexes Acting as Real Intermediates in Hydride Transfer from Michler’s Hydride to 2,3-Dichloro-5,6-dicyano-p-benzoquinone via Electron Transfer, J. Am. Chem. Soc., 1994, 116, 12099–12100

    Article  CAS  Google Scholar 

  43. S. Fukuzumi, K. Ohkubo, Y. Tokuda and T. Suenobu, Hydride Transfer from 9-Substituted 10-Methyl-9,10-dihydroacridines to Hydride Acceptors via Charge-Transfer Complexes and Sequential Electron-Proton-Electron Transfer. A Negative Temperature Dependence of the Rates, J. Am. Chem. Soc., 2000, 122, 4286–4294.

    Article  CAS  Google Scholar 

  44. S. Fukuzumi, Y. Endo and H. Imahori, A Negative Temperature Dependence of the Electron Self-Exchange Rates of Zinc Porphyrin p Radical Cations, J. Am. Chem. Soc., 2002, 124, 10974–10975

    Article  CAS  PubMed  Google Scholar 

  45. J. C. Yoder, J. P. Roth, E. M. Gussenhoven, A. S. Larsen and J. M. Mayer, Electron and Hydrogen-Atom Self-Exchange Reactions of Iron and Cobalt Coordination Complexes, J. Am. Chem. Soc., 2003, 125, 2629–2640.

    Article  CAS  PubMed  Google Scholar 

  46. A. M. Trozzolo, T. M. Leslie, A. S. Sarpotdar, R. D. Small, G. J. Ferraudi, T. DoMinh and R. L. Hartless, Photochemistry of some three-membered heterocycles, Pure Appl. Chem., 1979, 51, 261–270

    Article  CAS  Google Scholar 

  47. O. A. Usov, A. I. Sidorov, A. V. Nashchekin, O. A. Podsvirov, N. V. Kurbatova, V. A. Tsekhomsky, and A. V. Vostokov, SPR of Ag nanoparticles in photothermochromic glasses, in Plasmonics: Metallic Nanostructures and Their Optical Properties VII, Proceedings of SPIE, Vol. 7394, Editor, M. A. Stockman, August 20, 2009, see also http://spie.org/x648.html?product_id=825988.

  48. N. Haralampus-Grynaviski, C. Ransom, T. Ye, M. Ranowska, M. Wrona, T. Sarna and J. D. Simon, Photogeneration and quenching of reactive oxygen species by urocanic acid, J. Am. Chem. Soc., 2002, 124, 3461–3468.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Horikoshi or Nick Serpone.

Additional information

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c1pp05059a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horikoshi, S., Sato, T., Sakamoto, K. et al. Microwave discharge electrodeless lamps (MDEL). Photochem Photobiol Sci 10, 1239–1248 (2011). https://doi.org/10.1039/c1pp05059a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05059a

Navigation