Skip to main content
Log in

Excited state dependent electron transfer of a rhenium-dipyridophenazine complex intercalated between the base pairs of DNA: a time-resolved UV-visible and IR absorption investigation into the photophysics of fac-[Re(CO)3(F2dppz)(py)]+ bound to either [poly(dA-dT)]2 or [poly(dG-dC)]2

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The transient species formed following excitation of fac-[Re(CO)3(F2dppz)(py)]+ (F2dppz = 11,12-difluorodipyrido[3,2-a:2′,3′-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)]2 or [poly(dG-dC)]2 have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900–2100 and 1500–1750 cm−1 respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states. No electron transfer is found for the [poly(dA-dT)]2 complex, although characteristic changes are seen in the DNA-region TRIR consistent with changes in the binding of the bases in the intercalation site upon excitation of the dppz-complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. B. M. Zeglis, V. C. Pierre and J. K. Barton, Metallo-intercalators and metallo-insertors, Chem. Commun., 2007, 4565–4579.

    Google Scholar 

  2. L. Herman, S. Ghosh, E. Defrancq and A. Kirsch-De Memaeker, Ru(II) complexes and light: molecular tools for biomolecules, J. Phys. Org. Chem., 2008, 21, 670–681

    Article  CAS  Google Scholar 

  3. C. Metcalfe and J. A. Thomas, Kinetically inert transition metal complexes that reversibly bind to DNA, Chem. Soc. Rev., 2003, 32, 215–224.

    Article  CAS  PubMed  Google Scholar 

  4. J. G. Vos and J. M. Kelly, Ruthenium Polypyridyl Chemistry: From Basic Research to Applications and Back Again, Dalton Trans., 2006, 4869–4883.

    Google Scholar 

  5. A. E. Friedman, J. C. Chambron, J. P. Sauvage, N. J. Turro and J. K. Barton, A molecular light switch for DNA: Ru(bpy)2(dppz)2+, J. Am. Chem. Soc., 1990, 112, 4960–4962

    Article  CAS  Google Scholar 

  6. B. Önfelt, J. Olofsson, P. Lincoln and B. Norden, Picosecond and Steady-State Emission of [Ru(dppz)(phen)2]2+ in Glycerol: Anomalous Temperature Dependence Reveals Fast Excited State Equilibrium, J. Phys. Chem. A, 2003, 107, 1000–1009

    Article  CAS  Google Scholar 

  7. E. J. C. Olson, D. Hu, A. Hormann, A. M. Jonkman, M. R. Arkin, E. D. A. Stemp, J. K. Barton and P. F. Barbara, First Observation of the Key Intermediate in the “Light-Switch” Mechanism of [Ru(phen)2dppz]2+, J. Am. Chem. Soc., 1997, 119, 11458–11467.

    Article  CAS  Google Scholar 

  8. M. K. Brennaman, J. H. Alstrum-Acevedo, C. N. Fleming, P. Jang, T. J. Meyer and J. M. Papanikolas, Turning the [Ru(bpy)2(dppz)]2+ Light- Switch On and Off with Temperature, J. Am. Chem. Soc., 2002, 124, 15094–15098

    Article  CAS  PubMed  Google Scholar 

  9. M. K. Brennaman, T. J. Meyer and J. M. Papanikolas, Excited state dynamics in [Ru(bpy)2dppz]2+: Understanding the Light-Switch effect in Protic and Aprotic Solvents, J. Phys. Chem. A, 2004, 108, 9938–9944

    Article  CAS  Google Scholar 

  10. Olofsson, L. M. Wilhelmsson and P. Lincoln, Effects of Methyl Substitution on Radiative and Solvent Quenching Rate Constants of [Ru(phen)2dppz]2+ in Polyol Solvents and Bound to DNA, J. Am. Chem. Soc., 2004, 126, 15458–15465

    Article  PubMed  CAS  Google Scholar 

  11. J. Olofsson, B. Onfelt and P. Lincoln, Three-State Light Switch of [Ru(phen)2dppz]2+: Distinct Excited-State Species with Two, One, or No Hydrogen Bonds from Solvent, J. Phys. Chem. A, 2004, 108, 4391–4398.

    Article  CAS  Google Scholar 

  12. C. G. Coates, L. Jacquet, J. J. McGarvey, S. E. J. Bell, A. H. R. Al-Obaidi and J. M. Kelly, Resonance Raman Probing of the Interaction between Dipyridophenazine Complexes of Ru(II) and DNA, J. Am. Chem. Soc., 1997, 119, 7130–7136

    Article  CAS  Google Scholar 

  13. M. R. Waterland and K. C. Gordon, Electronic absorption, resonance Raman and excited-state resonance Raman spectroscopy of rhenium(I) and copper(I) complexes, with substituted dipyrido[3,2-a:2′,3′-c]phenazine ligands, and their electron reduced products, J. Raman Spectrosc., 2000, 31, 243–253

    Article  CAS  Google Scholar 

  14. A. C. Benniston, P. Matousek and A. W. Parker, Kerr-gated picosecond time-resolved resonance Raman spectroscopic probing of the excited states in Λ-[Ru(bipy)2dppz](BF4)2 (bipy = 2,2′-bipyridyl, dppz = dipyrido[3,2-a:2′,3′-c]phenazine), J. Raman Spectrosc., 2000, 31, 503–507

    Article  CAS  Google Scholar 

  15. B. J. Matthewson, A. Flood, M. I. J. Polson, C. Armstrong, D. L. Phillips and K. C. Gordon, Vibrational Spectra of Dipyrido[3,2-a:2′,3′-c]phenazine and Its Radical Anion Analyzed by Ab Initio Calculations and Deuteration Studies, Bull. Chem. Soc. Jpn., 2002, 75, 933–942

    Article  CAS  Google Scholar 

  16. N. J. Lundin, P. J. Walsh, S. L. Howell, J. J. McGarvey, A. G. Blackman and K. C. Gordon, Complexes of Functionalized Dipyrido[3,2-a:2′,3′-c]-phenazine: A Synthetic, Spec-troscopic, Structural, and Density Functional Theory Study, Inorg. Chem., 2005, 44, 3551–3560

    Article  CAS  PubMed  Google Scholar 

  17. P. J. Walsh, K. C. Gordon, N. J. Lundin and A. G. Blackman, Photoexcitation in Cu(I) and Re(I) Complexes Containing Substituted Dipyrido[3,2-a:2′,3′-c]phenazine: A Spectroscopic and Density Functional Theoretical Study, J. Phys. Chem. A, 2005, 109, 5933–5942

    Article  CAS  PubMed  Google Scholar 

  18. M. G. Fraser, A. G. Blackman, G. I. S. Irwin, C. P. Easton and K. C. Gordon, Effect of Sulfur-Based Substituents on the Electronic Properties of Re(I) dppz Complexes, Inorg. Chem., 2010, 49, 5180–5189.

    Article  CAS  PubMed  Google Scholar 

  19. J. Dyer, D. C. Grills, P. Matousek, A. W. Parker, M. Towrie, J. A. Weinstein and M. W. George, Revealing the photophysics of fac-[(dppz- 12-NO2)Re(CO)3(4-Me2Npy)]+: a picosecond time-resolved IR study, Chem. Commun., 2002, 872–873

    Google Scholar 

  20. M. K. Kuimova, W. Z. Alsindi, J. Dyer, D. C. Grills, O. S. Jina, P. Matousek, A. W. Parker, P. Portius, X. Z. Sun, M. Towrie, C. Wilson, J. Yang and M. W. George, Using picosecond and nanosecond time-resolved infrared spectroscopy for the investigation of excited states and reaction intermediates of inorganic systems, Dalton Trans., 2003, 3996–4006

    Google Scholar 

  21. M. K. Kuimova, D. C. Grills, P. Matousek, A. W. Parker, X. Z. Sun, M. Towrie and M. W. George, Picosecond time-resolved infrared investigation into the nature of the lowest excited state of fac-[Re(Cl)(CO)3(CO2Et-dppz)] (CO2Et-dppz = dipyrido[3,2a:2′,3′c]phenazine-11-carboxylic ethyl ester), Vib. Spectrosc., 2004, 35, 219–223

    Article  CAS  Google Scholar 

  22. J. Dyer, C. M. Creely, J. C. Penedo, D. C. Grills, S. Hudson, P. Matousek, A. W. Parker, M. Towrie, J. M. Kelly and M. W. George, Solvent dependent photophysics of fac-[Re(CO)3(11,12-X2dppz)(py)]+ (X = H, F or Me), Photochem. Photobiol. Sci., 2007, 6, 741–748

    Article  CAS  PubMed  Google Scholar 

  23. M. K. Kuimova, X. Z. Sun, P. Matousek, D. C. Grills, A. W. Parker, M. Towrie and M. W. George, Probing intraligand and charge transfer excited states of fac-[Re(R)(CO)3(CO2Et-dppz)]+ (R = py, 4-Me2N-py; CO2Et-dppz = dipyrido[3,2a:2′,3′c]phenazine-11-carboxylic ethyl ester) using time-resolved infrared spectroscopy, Photochem. Photobiol. Sci., 2007, 6, 1158–1163

    Article  CAS  PubMed  Google Scholar 

  24. M. K. Kuimova, W. Z. Alsindi, A. J. Blake, E. S. Davies, D. J. Lampus, P. Matousek, J. McMaster, A. W. Parker, M. Towrie, X. Z. Sun, C. Wilson and M. W. George, Probing the Solvent Dependent Photophysics of fac-[Re(CO)3(dppz-X2)Cl] (dppz-X2 = 11,12-X2-dipyrido[3,2-a:2′,3′-c]phenazine); X = CH3, H, F, Cl, CF3, Inorg. Chem., 2008, 47, 9857–9869.

    Article  CAS  PubMed  Google Scholar 

  25. L. Jacquet, R. J. H. Davies, A. Kirsch-De Mesmaeker and J. M. Kelly, Photoaddition of Ru(tap)2(bpy)2+ to DNA: A New Mode of Covalent Attachment of Metal Complexes to Duplex DNA, J. Am. Chem. Soc., 1997, 119, 11763–11768

    Article  CAS  Google Scholar 

  26. C. Moucheron, A. Kirsch-De Mesmaeker and J. M. Kelly, Photoreactions of ruthenium(II) and os-mium(II) complexes with deoxyribonucleic acid (DNA), J. Photochem. Photobiol., B, 1997, 40, 91–106

    Article  CAS  Google Scholar 

  27. C. Moucheron and A. Kirsch-De Mesmaeker, New DNA-binding ruthenium(II) complexes as photo-reagents for mononucleotides and DNA, J. Phys. Org. Chem., 1998, 11, 577–583

    Article  CAS  Google Scholar 

  28. L. Jacquet, J. M. Kelly and A. Kirsch-De Mesmaeker, Photoadduct between tris-(1,4,5,8, tetraazaphenanthrene)ruthenium and guanosine monophosphate-a model for a new mode of covalent binding of metal complexes to DNA, J. Chem. Soc., Chem. Commun., 1995, 913–914

    Google Scholar 

  29. J.-P. Lecomte, A. Kirsch-De Mesmaeker, M. M. Feeney and J. M. Kelly, Ruthenium(II) Complexes with 1,4,5,8,9,12-Hexaazatriphenylene and 1,4,5,8-Tetraazaphenanthrene Ligands: Key Role Played by the Photoelectron Transfer in DNA Cleavage and Adduct Formation, Inorg. Chem., 1995, 34, 6481–6491

    Article  CAS  Google Scholar 

  30. J. M. Kelly, D. J. McConnell, C. OhUigin, A. B. Tossi, A. Kirsch-De Mesmaeker, A. Masschelein and J. Nasielski, Ruthenium polypyridyl complexes; their interaction with DNA and their role as sensitisers for its photocleavage, J. Chem. Soc., Chem. Commun., 1987, 1821–1823

    Google Scholar 

  31. L. Ghizdavu, F. Pierard, S. Rickling, S. Aury, M. Surin, D. Beljonne, R. Lazzaroni, P. Murat, E. Defrancq, C. Moucheron and A. Kirsch-De Mesmaeker, Oxidizing Ru(II) Complexes as Irreversible and Specific Photo-Cross-Linking Agents of Oligonucleotide Duplexes, Inorg. Chem., 2009, 48, 10988–10994

    Article  CAS  PubMed  Google Scholar 

  32. I. Ortmans, B. Elias, J. M. Kelly, C. Moucheron and A. Kirsch-De Mesmaeker, [Ru(TAP)2(dppz)]2+: a DNA intercalating complex, which luminesces strongly in water and undergoes photo-induced proton-coupled electron transfer with guanosine-5′-monophosphate, Dalton Trans., 2004, 668–676.

    Google Scholar 

  33. B. Elias, C. M. Creely, G. W. Doorley, M. M. Feeney, C. Moucheron, A. Kirsch-De Mesmaeker, J. Dyer, D. C. Grills, M. W. George, P. Matousek, A. W. Parker, M. Towrie and J. M. Kelly, Photooxidation of guanine by a ruthenium dipyridophenazine complex intercalated in a double-stranded polynucleotide monitored directly by picosecond visible and infrared transient absorption spectroscopy, Chem.-Eur. J., 2008, 14, 369–375.

    Article  CAS  PubMed  Google Scholar 

  34. M. Towrie, G. W. Doorley, M. W. George, A. W. Parker, S. J. Quinn and J. M. Kelly, pps-TRIR covers all the bases - recent advances in the use of transient IR for the detection of short-lived species in nucleic acids, Analyst, 2009, 134, 1265–1273

    Article  CAS  PubMed  Google Scholar 

  35. A. W. Parker, C. Y. Lin, M. W. George, M. Towrie and M. K. Kuimova, Infrared Characterization of the Guanine Radical Cation: Finger Printing DNA Damage, J. Phys. Chem. B, 2010, 114, 3660–3667

    Article  CAS  PubMed  Google Scholar 

  36. M. K. Kuimova, A. J. Cowan, P. Matousek, A. W. Parker, X.-Z. Sun, M. Towrie and M. W. George, Monitoring the Direct and Indirect Damage of DNA Bases and Polynucleotides using Time-resolved Infrared Spectroscopy, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 2150–2153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. A. Capobianco, M. Carotenuto, T. Caruso and A. Peluso, The Charge-Transfer Band of an Oxidized Watson-Crick Guanosine-Cytidine Complex, Angew. Chem., Int. Ed., 2009, 48, 9526–9528.

    Article  CAS  Google Scholar 

  38. J. J. Turner, M. W. George, F. P. A. Johnson and J. R. Westwell, Time-resolved infrared spectroscopy of excited states of transition metal species, Coord. Chem. Rev., 1993, 125, 101–114

    Article  CAS  Google Scholar 

  39. M. W. George and J. J. Turner, Excited States of Transition Metal Complexes Studied by Time-resolved Infrared Spectroscopy, Coord. Chem. Rev., 1998, 177, 201–217

    Article  CAS  Google Scholar 

  40. J. M. Butler, M. W. George, J. R. Schoonover, D. M. Dattelbaum and T. J. Meyer, Application of Transient Infrared and Near Infrared Spectroscopy to Transition Metal Complex Excited States and Intermediates, Coord. Chem. Rev., 2007, 251, 492–514.

    Article  CAS  Google Scholar 

  41. V. W. W. Yam, K. K. W. Lo, K. K. Cheung and R. Y. C. Kong, J. Chem. Soc., Dalton Trans., 1997, 2067–2072.

    Google Scholar 

  42. H. D. Stoeffler, N. B. Thornton, S. L. Temkin and K. S. Schanze, Unusual Photophysics of a Rhenium(I) Dipyridophenazine Complex in Homogeneous Solution and Bound to DNA, J. Am. Chem. Soc., 1995, 117, 7119–7128.

    Article  CAS  Google Scholar 

  43. J. Dyer, W. J. Blau, C. G. Coates, C. M. Creely, J. D. Gavey, M. W. George, D. C. Grills, S. Hudson, J. M. Kelly, P. Matousek, J. J. McGarvey, J. McMaster, A. W. Parker, M. Towrie and J. A. Weinstein, The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study, Photochem. Photobiol. Sci., 2003, 2, 542–554.

    Article  CAS  PubMed  Google Scholar 

  44. A. H. Alamiry, N. M. Boyle, C. C. Brookes, M. W. George, C. Long, P. Portius, M. T. Pryce, K. L. Ronayne, X. -Z. Sun, M. Towrie and K. Q. Vuong, Unusually Slow Photo-dissociation of CO from (η6-C6H6)Cr(CO)3 (M = Cr or Mo); a Time Resolved Infrared, Matrix Isolation and DFT Investigation, Organometallics, 2009, 28, 1461–1468.

    Article  CAS  Google Scholar 

  45. E. J. Baerends, D. E. Ellis and P. Ros, Self-consistent molecular Hartree-Fock—Slater calculations I. The computational procedure, Chem. Phys., 1973, 2, 41

    Article  CAS  Google Scholar 

  46. G. T. Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84.

    Article  Google Scholar 

  47. S. H. Vosko, L. Wilk and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 1980, 58, 1200

    Article  CAS  Google Scholar 

  48. A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098

    Article  CAS  Google Scholar 

  49. J. P. Perdew, Phys. Rev. B. 1986, 33, 8822.

    Article  CAS  Google Scholar 

  50. P. Flukiger, H. P. Luhti, S. Portmann, J. Weber, MOLEKEL 4.2, Swiss Center for Scientific Computing, Manno (Switzerland), 2000-2002

    Google Scholar 

  51. S. Portmann and H. P. Luhti, MOLEKEL: An interactive molecular graphics tool, Chimia, 2000, 54, 766.

    CAS  Google Scholar 

  52. M. W. George, M. Poliakoff and J. J. Turner, Nanosecond Time-Resolved Infrared Spectroscopy: a Comparative View of Spectrometers and their Applications in Organometallic Chemistry, Analyst, 1994, 119, 551–552

    Article  CAS  Google Scholar 

  53. M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. S. Ma, D. Phillips, A. W. Parker and M. W. George, Construction of a Femto-/Picosecond Time-resolved Resonance Raman, Fluores cence, UV/Visible and Infrared Transient Absortion Spectrometer: The Incorporation of a Broadband Infrared Spectrometer into an Existing Ultrafast Spectroscopy Apparatus, Appl. Spectrosc., 2003, 57, 367–380

    Article  CAS  PubMed  Google Scholar 

  54. P. Brennan, M. W. George, O. S. Jina, C. Long, J. McKenna, M. T. Pryce, X. Z. Sun and K. Q. Vuong, Photoin-duced Se-C insertion following photolysis of (η5-C4H4Se)Cr(CO)3. A Picosecond and Nanosecond Time-resolved Infrared, Matrix isolation, and DFT investigation, Organometallics, 2008, 27, 3671–3680.

    Article  CAS  Google Scholar 

  55. A. Adhikary, A. Kumar, D. Khanduri and M. D. Sevilla, The effect of base stacking on the acid-base properties of the adenine cation radical [A·+] in solution: ESR and DFT studies, J. Am. Chem. Soc., 2008, 130, 10282–10292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. K. Kobayashi and S. J. Tagawa, Direct Observation of Guanine Radical Cation Deprotonation in Duplex DNA Using Pulse Radiolysis, J. Am. Chem. Soc., 2003, 125, 10213–10218.

    Article  CAS  PubMed  Google Scholar 

  57. E. M. Tuite and J. M. Kelly, New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates, J. Photochem. Photobiol., B, 1993, 21, 103–124

    Article  CAS  Google Scholar 

  58. G. D. Reid, D. J. Whittaker, M. A. Day, D. A. Turton, V. Kayser, J. M. Kelly and G. S. Beddard, Femtosecond Electron-Transfer Reactions in Mono- and Polynu-cleotides and in DNA, J. Am. Chem. Soc., 2002, 124, 5518–5527.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Kelly.

Additional information

Electronic supplementary information (ESI) available: UV/vis absorption spectra and emission ([poly(dA-dT)]2] only) of fac-[Re(CO)3(F2dppz)(py)]+ recorded in buffered D2O solution in the presence of increasing concentrations of [poly(dA-dT)]2] or [poly(dG-dC)]2]. See DOI: 10.1039/c1pp05050h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Creely, C.M., Davies, E.S. et al. Excited state dependent electron transfer of a rhenium-dipyridophenazine complex intercalated between the base pairs of DNA: a time-resolved UV-visible and IR absorption investigation into the photophysics of fac-[Re(CO)3(F2dppz)(py)]+ bound to either [poly(dA-dT)]2 or [poly(dG-dC)]2. Photochem Photobiol Sci 10, 1355–1364 (2011). https://doi.org/10.1039/c1pp05050h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05050h

Navigation