Issue 1, 2012

Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging

Abstract

We report a highly sensitive optical imaging technology using surface-enhanced Raman scattering (SERS)-fluorescence dual modal nanoprobes (DMNPs). Fluorescence microscopy is a well-known imaging technique that shows specific protein distributions within cells. However, most currently available fluorescent organic dyes have relatively weak emission intensities and are rapidly photo-bleached. Thus more sensitive and stable probes are needed. In this work we develop DMNPs, which can be used for both SERS and fluorescence detection. SERS detection is a powerful technique that allows ultrasensitive chemical or biochemical analysis through unlimited multiplexing and single molecule sensitivity. Combining advantages of fluorescence and SERS allows these dual modal nanostructures to be used as powerful probes for novel biomedical imaging. In this work, the fabrication and characterization of the SERS-fluorescence DMNPs and application to biological imaging were investigated using markers CD24 and CD44, which are co-expressed in MDA-MB-231 breast cancer cells, as a model system. SERS imaging with DMNPs was found to be a powerful tool to determine the co-localization of CD24 and CD44 in the cell.

Graphical abstract: Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2011
Accepted
13 Oct 2011
First published
11 Nov 2011

Nanoscale, 2012,4, 124-129

Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging

S. Lee, H. Chon, S. Yoon, E. K. Lee, S. Chang, D. W. Lim and J. Choo, Nanoscale, 2012, 4, 124 DOI: 10.1039/C1NR11243K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements