Skip to main content

Advertisement

Log in

Antitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP)

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The development of cancer is tightly related to the successful evasion of neoplastic tissue from immune system surveillance, which represents a key obstacle in tumor therapy. Most conventional therapies (surgery, chemotherapy and radiation) target the tumor cells directly or indirectly, while immunotherapy attempts to enhance host anti-tumor response. In a manner similar to surgery, photodynamic therapy (PDT), also a local tumor therapy, aims at tumor ablation in its initial acute phase. Treatment success is mainly determined by tumor eradication and the absence of local recurrences. However, experience gained over several decades of therapeutic application has repeatedly hinted at long term therapeutic effects of PDT, suggesting activation of the immune system by this treatment modality. Such contribution of the immune system to treatment success was widely confirmed in many laboratories in various preclinical and some clinical studies. In this present short review, we wish to present our modest contribution to this potential therapeutic trend describing the immune response upon application of a novel photosensitizing methodology: vascular targeted photodynamic therapy (VTP) developed in our laboratories. This modality differs from classical PDT in most aspects (sensitizer: Pd-bacteriochlorophyll and consequent spectral wavelength in the near infrared, the generated photochemistry, the treatment target, treatment objective, treatment protocol and more). For example in contrast to the tumor cells that constitute the target of classical PDT, the targets of VTP are the tumor-feeding arteries and draining veins whose almost instant occlusion (minutes) leads to tumor blood stasis and eradication. Some of the mechanistic features of the induced immune response, such as innate and acquired cellular and humoral mediators, induction of new antigens, resulting from oxidative modifications and implications for anti-tumor vaccination in this different treatment environment, are discussed. VTP is about to enter phase III clinical trials for the therapy of prostate cancer and the potential involvement of the immune system may contribute an interesting aspect for the understanding and future development of this treatment modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. J. Finn, Cancer immunology, N. Engl. J.Med., 2008, 358, 2704–2715.

    Article  CAS  PubMed  Google Scholar 

  2. G. P. Adams and L. M. Weiner, Monoclonal antibody therapy of cancer, Nat. Biotechnol., 2005, 23, 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  3. D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde, T. Fleming, W. Eiermann, J. Wolter, M. Pegram, J. Baselga and L. Norton, Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2, N. Engl. J. Med., 2001, 344, 783–792.

    Article  CAS  PubMed  Google Scholar 

  4. J. Copier, A. G. Dalgleish, C.M. Britten, L. H. Finke, G. Gaudernack, S. Gnjatic, K. Kallen, R. Kiessling, M. Schuessler-Lenz, H. Singh, J. Talmadge, H. Zwierzina and L. Hakansson, Improving the efficacy of cancer immunotherapy, Eur. J. Cancer, 2009, 45, 1424–1431.

    Article  CAS  PubMed  Google Scholar 

  5. S. Akira, K. Takeda and T. Kaisho, Toll-like receptors: critical proteins linking innate and acquired immunity, Nat. Immunol., 2001, 2, 675–680.

    Article  CAS  PubMed  Google Scholar 

  6. A. Lanzavecchia and F. Sallusto, Regulation of T cell immunity by dendritic cells, Cell, 2001, 106, 263–266.

    Article  CAS  PubMed  Google Scholar 

  7. A. J. Hayes, L. Y. Li and M. E. Lippman, Science, medicine, and the future. Antivascular therapy: a new approach to cancer treatment, Br. Med. J., 1999, 318, 853–856.

    Article  CAS  Google Scholar 

  8. M. A. Gimbrone, Jr., S. B. Leapman, R. S. Cotran and J. Folkman, Tumor dormancy in vivo by prevention of neovascularization, J. Exp. Med., 1972, 136, 261–276.

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Eberhard, S. Kahlert, V. Goede, B. Hemmerlein, K. H. Plate and H. G. Augustin, Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies, Cancer Res., 2000, 60, 1388–1393.

    CAS  PubMed  Google Scholar 

  10. H. F. Dvorak, J. A. Nagy, J. T. Dvorak and A. M. Dvorak, Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules, Am. J. Pathol., 1988, 133, 95–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Boucher, L. T. Baxter and R. K. Jain, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy, Cancer Res., 1990, 50, 4478–4484.

    CAS  PubMed  Google Scholar 

  12. J. L. Li and A. L. Harris, The potential of new tumor endotheliumspecific markers for the development of antivascular therapy, Cancer Cell, 2007, 11, 478–481.

    Article  CAS  PubMed  Google Scholar 

  13. M. M. Cooney, W. van Heeckeren, S. Bhakta, J. Ortiz and S. C. Remick, Drug insight: vascular disrupting agents and angiogenesis–novel approaches for drug delivery, Nat. Clin. Pract. Oncol., 2006, 3, 682–692.

    Article  CAS  PubMed  Google Scholar 

  14. S. Fleshker, D. Preise, V. Kalchenko, A. Scherz and Y. Salomon, Prompt assessment of WST11-VTP outcome using luciferase transfected tumors enables second treatment and increase in overall therapeutic rate, Photochem. Photobiol., 2008, 84, 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  15. D. Preise, O. Mazor, N. Koudinova, M. Liscovitch, A. Scherz and Y. Salomon, Bypass of tumor drug resistance by antivascular therapy, Neoplasia, 2003, 5, 475–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. A. Scherz, Y. Salomon, H. Scheer, and A. Brandis, Palladiumsubstituted bacteriochlorophyll derivatives and use thereof., International PC Patent Application No. PCT/IL99/00673., 1999.

    Google Scholar 

  17. S. Gross, A. Gilead, A. Scherz, M. Neeman and Y. Salomon, Monitoring photodynamic therapy of solid tumors online by BOLDcontrast MRI, Nat. Med., 2003, 9, 1327–1331.

    Article  CAS  PubMed  Google Scholar 

  18. N. V. Koudinova, J. H. Pinthus, A. Brandis, O. Brenner, P. Bendel, J. Ramon, Z. Eshhar, A. Scherz and Y. Salomon, Photodynamic therapy with Pd-Bacteriopheophorbide (TOOKAD): successful in vivo treatment of human prostatic small cell carcinoma xenografts, Int. J. Cancer, 2003, 104, 782–789.

    Article  CAS  PubMed  Google Scholar 

  19. A. Brandis, O. Mazor, E. Neumark, V. Rosenbach-Belkin, Y. Salomon and A. Scherz, Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins, Photochem. Photobiol., 2005, 81, 983–993.

    Article  CAS  PubMed  Google Scholar 

  20. O. Mazor, A. Brandis, V. Plaks, E. Neumark, V. Rosenbach-Belkin, Y. Salomon and A. Scherz, WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model, Photochem. Photobiol., 2005, 81, 342–351.

    Article  CAS  PubMed  Google Scholar 

  21. I. Ashur, R. Goldschmidt, I. Pinkas, Y. Salomon, G. Szewczyk, T. Sarna and A. Scherz, Photocatalytic generation of oxygen radicals by thewater-soluble bacteriochlorophyll derivative WST11, noncovalently bound to serum albumin, J. Phys. Chem. A, 2009, 113, 8027–8037.

    Article  CAS  PubMed  Google Scholar 

  22. S. R. Davidson, R. A. Weersink, M. A. Haider, M. R. Gertner, A. Bogaards, D. Giewercer, A. Scherz, M. D. Sherar, M. Elhilali, J. L. Chin, J. Trachtenberg and B. C. Wilson, Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer, Phys. Med. Biol., 2009, 54, 2293–2313.

    Article  PubMed  Google Scholar 

  23. J. Trachtenberg, A. Bogaards, R. A. Weersink, M. A. Haider, A. Evans, S. A. McCluskey, A. Scherz, M. R. Gertner, C. Yue, S. Appu, A. Aprikian, J. Savard, B. C. Wilson and M. Elhilali, Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response, J. Urol., 2007, 178, 1974–1979, discussion p. 1979.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Vakrat-Haglili, L. Weiner, V. Brumfeld, A. Brandis, Y. Salomon, B. McLlroy, B. C. Wilson, A. Pawlak, M. Rozanowska, T. Sarna and A. Scherz, The microenvironment effect on the generation of reactive oxygen species by Pd-bacteriopheophorbide, J. Am. Chem. Soc., 2005, 127, 6487–6497.

    Article  CAS  PubMed  Google Scholar 

  25. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  26. N. Madar-Balakirski, C. Tempel-Brami, V. Kalchenko, O. Brenner, D. Varon, A. Scherz and Y. Salomon, Permanent occlusion of feeding arteries and draining veins in solid mouse tumors by vascular targeted photodynamic therapy (VTP) with Tookad, PLoS One, 2010, 5, e10282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. M. Korbelik and G. J. Dougherty, Photodynamic therapy-mediated immune response against subcutaneous mouse tumors, Cancer Res., 1999, 59, 1941–1946.

    CAS  PubMed  Google Scholar 

  28. D. Preise, R. Oren, I. Glinert, V. Kalchenko, S. Jung, A. Scherz and Y. Salomon, Systemic antitumor protection by vascular-targeted photodynamic therapy involves cellular and humoral immunity, Cancer Immunol. Immunother., 2008, 58, 71–84.

    Article  PubMed  CAS  Google Scholar 

  29. G. Canti, D. Lattuada, A. Nicolin, P. Taroni, G. Valentini and R. Cubeddu, Antitumorimmunity induced by photodynamic therapywith aluminium disulfonated phthalocyanines and laser light, Anti-Cancer Drugs, 1994, 5, 443–447.

    Article  CAS  PubMed  Google Scholar 

  30. N. Agrawal, C. Bettegowda, I. Cheong, J. F. Geschwind, C. G. Drake, E. L. Hipkiss, M. Tatsumi, L. H. Dang, L. A. Diaz, Jr., M. Pomper, M. Abusedera, R. L. Wahl, K. W. Kinzler, S. Zhou, D. L. Huso and B. Vogelstein, Bacteriolytic therapy can generate a potent immune response against experimental tumors, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 15172–15177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. J. Wysocki, E. P. Kwiatkowska, U. Kazimierczak, W. Suchorska, D. W. Kowalczyk and A. Mackiewicz, Captopril, an angiotensinconverting enzyme inhibitor, promotes growth of immunogenic tumors in mice, Clin. Cancer Res., 2006, 12, 4095–4102.

    Article  CAS  PubMed  Google Scholar 

  32. X. Huang, M. K. Wong, H. Yi, S. Watkins, A. D. Laird, S. F. Wolf and E. Gorelik, Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein, Cancer Res., 2002, 62, 5727–5735.

    CAS  PubMed  Google Scholar 

  33. A. P. Castano, P. Mroz, M. X. Wu and M. R. Hamblin, Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 5495–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. E. Kabingu, L. Vaughan, B. Owczarczak, K. D. Ramsey and S. O. Gollnick, CD8+ T cell-mediated control of distant tumours following local photodynamic therapy is independent of CD4+ T cells and dependent on natural killer cells, Br. J. Cancer, 2007, 96, 1839–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. V. H. Fingar, W. R. Potter and B. W. Henderson, Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes, Photochem. Photobiol., 1987, 45, 643–650.

    Article  CAS  PubMed  Google Scholar 

  36. S. O. Gollnick, L. Vaughan and B. W. Henderson, Generation of effective antitumor vaccines using photodynamic therapy, Cancer Res., 2002, 62, 1604–1608.

    CAS  PubMed  Google Scholar 

  37. A. Ribas, J. M. Timmerman, L. H. Butterfield and J. S. Economou, Determinant spreading and tumor responses after peptide-based cancer immunotherapy, Trends Immunol., 2003, 24, 58–61.

    Article  CAS  PubMed  Google Scholar 

  38. A. K. Abbas and A. H. Lichtman, Cellular and molecular immunology, Elsevier Saunders, Philadelphia, PA, 5th edn, 2005.

    Google Scholar 

  39. E. S. Abdel-Hady, P. Martin-Hirsch, M. Duggan-Keen, P. L. Stern, J. V. Moore, G. Corbitt, H.C. Kitchener and I.N. Hampson, Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy, Cancer Res., 2001, 61, 192–196.

    CAS  PubMed  Google Scholar 

  40. P. S. Thong, K. W. Ong, N. S. Goh, K. W. Kho, V. Manivasager, R. Bhuvaneswari, M. Olivo and K. C. Soo, Photodynamic-therapyactivated immune response against distant untreated tumours in recurrent angiosarcoma, Lancet Oncol., 2007, 8, 950–952.

    Article  CAS  PubMed  Google Scholar 

  41. R. M. Zinkernagel and H. Hengartner, Regulation of the immune response by antigen, Science, 2001, 293, 251–253.

    Article  CAS  PubMed  Google Scholar 

  42. L. Chen, Immunological ignorance of silent antigens as an explanation of tumor evasion, Immunol. Today, 1998, 19, 27–30.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Lu and P. S. Low, Targeted immunotherapy of cancer: development of antibody-induced cellular immunity, J. Pharm. Pharmacol., 2003, 55, 163–167.

    Article  CAS  PubMed  Google Scholar 

  44. W. R. Chen, Z. Huang, M. Korbelik, R. E. Nordquist and H. Liu, Photoimmunotherapy for cancer treatment, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 281–291.

    Article  CAS  PubMed  Google Scholar 

  45. F. H. van Duijnhoven, R. A. Tollenaar, O. T. Terpstra and P. J. Kuppen, Locoregional therapies of liver metastases in a rat CC531 coloncarcinoma model results in increased resistance to tumour rechallenge, Clin. Exp. Metastasis, 2005, 22, 247–253.

    Article  PubMed  CAS  Google Scholar 

  46. A. Jalili, M. Makowski, T. Switaj, D. Nowis, G. M. Wilczynski, E. Wilczek, M. Chorazy-Massalska, A. Radzikowska, W. Maslinski, L. Bialy, J. Sienko, A. Sieron, M. Adamek, G. Basak, P. Mroz, I. W. Krasnodebski, M. Jakobisiak and J. Golab, Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells, Clin. Cancer Res., 2004, 10, 4498–4508.

    Article  CAS  PubMed  Google Scholar 

  47. T. Kushibiki, T. Tajiri, Y. Tomioka and K. Awazu, Photodynamic therapy induces interleukin secretion from dendritic cells, Int. J. Clin. Exp. Med., 2010, 3, 110–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Jung, D. Unutmaz, P. Wong, G. Sano, K. De, los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko, F. Zavala, E. G. Pamer, D. R. Littman and R. A. Lang, In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens, Immunity, 2002, 17, 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. B. Chen, B. W. Pogue, J. M. Luna, R. L. Hardman, P. J. Hoopes and T. Hasan, Tumor vascular permeabilization by vascular-targeting photosensitization: effects, mechanism, and therapeutic implications, Clin. Cancer Res., 2006, 12, 917–923.

    Article  CAS  PubMed  Google Scholar 

  50. D. E. Dolmans, A. Kadambi, J. S. Hill, C. A. Waters, B. C. Robinson, J. P. Walker, D. Fukumura and R. K. Jain, Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy, Cancer Res., 2002, 62, 2151–2156.

    CAS  PubMed  Google Scholar 

  51. J. Zilberstein, A. Bromberg, A. Frantz, V. Rosenbach-Belkin, A. Kritzmann, R. Pfefermann, Y. Salomon and A. Scherz, Lightdependent oxygen consumption in bacteriochlorophyll-serine-treated melanoma tumors: on-line determination using a tissue-inserted oxygen microsensor, Photochem. Photobiol., 1997, 65, 1012–1019.

    Article  CAS  PubMed  Google Scholar 

  52. G. L. Semenza, Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology, Trends Mol. Med., 2001, 7, 345–350.

    Article  CAS  PubMed  Google Scholar 

  53. V. Nizet and R. S. Johnson, Interdependence of hypoxic and innate immune responses, Nat. Rev. Immunol., 2009, 9, 609–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. B. Acosta-Iborra, A. Elorza, I. M. Olazabal, N. B. Martin-Cofreces, S. Martin-Puig, M. Miro, M. J. Calzada, J. Aragones, F. Sanchez-Madrid and M. O. Landazuri, Macrophage oxygen sensing modulates antigen presentation and phagocytic functions involving IFN-gamma production through the HIF-1 alpha transcription factor, J. Immunol., 2009, 182, 3155–3164.

    Article  CAS  PubMed  Google Scholar 

  55. A. Mancino, T. Schioppa, P. Larghi, F. Pasqualini, M. Nebuloni, I. H. Chen, S. Sozzani, J. M. Austyn, A. Mantovani and A. Sica, Divergent effects of hypoxia on dendritic cell functions, Blood, 2008, 112, 3723–3734.

    Article  CAS  PubMed  Google Scholar 

  56. S. Mitra, S. E. Cassar, D. J. Niles, J. A. Puskas, J. G. Frelinger and T. H. Foster, Photodynamic therapy mediates the oxygen-independent activation of hypoxia-inducible factor 1alpha, Mol. Cancer Ther., 2006, 5, 3268–3274.

    Article  CAS  PubMed  Google Scholar 

  57. Z. Ji, G. Yang, S. Shahzidi, K. Tkacz-Stachowska, Z. Suo, J. M. Nesland and Q. Peng, Induction of hypoxia-inducible factor-1alpha overexpression by cobalt chloride enhances cellular resistance to photodynamic therapy, Cancer Lett., 2006, 244, 182–189.

    Article  CAS  PubMed  Google Scholar 

  58. M. K. Callahan, D. Chaillot, C. Jacquin, P. R. Clark and A. Menoret, Differential acquisition of antigenic peptides by Hsp70 and Hsc70 under oxidative conditions, J. Biol. Chem., 2002, 277, 33604–33609.

    Article  CAS  PubMed  Google Scholar 

  59. C. L. Chiang, J. A. Ledermann, A. N. Rad, D. R. Katz and B. M. Chain, Hypochlorous acid enhances immunogenicity and uptake of allogeneic ovarian tumor cells by dendritic cells to cross-prime tumor-specific T cells, Cancer Immunol. Immunother., 2006, 55, 1384–1395.

    Article  PubMed  Google Scholar 

  60. L. J. Marnett, J. N. Riggins and J. D. West, Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein, J. Clin. Invest., 2003, 111, 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S. Yla-Herttuala, W. Palinski, S.W. Butler, S. Picard, D. Steinberg and J. L. Witztum, Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL, Arterioscler. Thromb., 1994, 14, 32–40.

    Article  CAS  PubMed  Google Scholar 

  62. D. M. Wuttge, M. Bruzelius and S. Stemme, T-cell recognition of lipid peroxidation products breaks tolerance to self proteins, Immunology, 1999, 98, 273–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. E. Carrasco-Marin, J. E. Paz-Miguel, P. Lopez-Mato, C. Alvarez-Dominguez and F. Leyva-Cobian, Oxidation of defined antigens allows protein unfolding and increases both proteolytic processing and exposes peptide epitopes which are recognized by specific T cells, Immunology, 1998, 95, 314–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. P. Srivastava, Roles of heat-shock proteins in innate and adaptive immunity, Nat. Rev. Immunol., 2002, 2, 185–194.

    Article  CAS  PubMed  Google Scholar 

  65. B. Javid, P. A. MacAry and P. J. Lehner, Structure and function: heat shock proteins and adaptive immunity, J. Immunol., 2007, 179, 2035–2040.

    Article  CAS  PubMed  Google Scholar 

  66. C. V. Nicchitta, Re-evaluating the role of heat-shock protein-peptide interactions in tumour immunity, Nat.Rev. Immunol., 2003, 3, 427–432.

    Article  CAS  PubMed  Google Scholar 

  67. M. Korbelik, J. Sun and I. Cecic, Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response, Cancer Res., 2005, 65, 1018–1026.

    CAS  PubMed  Google Scholar 

  68. V. Plaks, Y. Posen, O. Mazor, A. Brandis, A. Scherz and Y. Salomon, Homologous adaptation to oxidative stress induced by the photosensitized Pd-bacteriochlorophyll derivative (WST11) in cultured endothelial cells, J. Biol. Chem., 2004, 279, 45713–45720.

    Article  CAS  PubMed  Google Scholar 

  69. M. Korbelik and J. Sun, Photodynamic therapy-generated vaccine for cancer therapy, Cancer Immunol. Immunother., 2005, 55, 900–909.

    Article  PubMed  CAS  Google Scholar 

  70. L. Goldshaid, E. Rubinstein, A. Brandis, D. Segal, N. Leshem, O. Brenner, V. Kalchenko, D. Eren, T. Yecheskel, Y. Salitra, Y. Salomon and A. Scherz, Novel design principles enable specific targeting of imaging and therapeutic agents to necrotic domains in breast tumors, Breast Cancer Res., 2010, 12, R29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. R. Goldberg, PhD. Thesis, The Weizmann Institute of Science, 2011.

    Google Scholar 

  72. D. Preise, PhD Thesis, The Weizmann Institute of Science, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preise, D., Scherz, A. & Salomon, Y. Antitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP). Photochem Photobiol Sci 10, 681–688 (2011). https://doi.org/10.1039/c0pp00315h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00315h

Navigation