Skip to main content
Log in

Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report the photocatalytic oxidation of benzylic carbon atoms under mild conditions using riboflavin tetraacetate as photocatalyst and blue-emitting LEDs (440 nm) as light source. Oxygen is the terminal oxidant and hydrogen peroxide appears as the only byproduct in most cases. The process oxidizes toluene derivatives, stilbenes, styrenes and phenylacetic acids to their corresponding benzaldehydes. A benzyl methyl ether and acylated benzyl amines are oxidized directly to the corresponding methyl ester or benzylimides. The mechanism of the reactions has been investigated and the results indicate that oxygen addition to benzyl radicals is a key step of the oxidation process in the case of phenylacetic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. V. Massey, The Chemical and Biological Versatility of Riboflavin, Biochem. Soc. Trans., 2000, 28, 283.

    Article  CAS  PubMed  Google Scholar 

  2. S. Gishla, V. Massey, Mechanisms of flavoprotein-catalyzed reactions, Eur. J. Biochem., 1989, 181, 1.

    Article  Google Scholar 

  3. P. Hemmerich, The present status of flavin and flavocoenzyme chemistry, Chem. Org. Nat. Prod., 1976, 33, 451.

    CAS  Google Scholar 

  4. B. J. Jordan, C. Cooke, J. F. Garety, M. A. Pollier, N. Kryvokhyzha, A. Bayir, G. Rabani, V. M. Rotello, Polymeric model systems for flavoenzyme activity: towards synthetic flavoenzymes, Chem. Commun., 2007, 1248.

    Google Scholar 

  5. J. B. Carroll, B. J. Jordan, H. Xu, B. Erdogan, L. Lee, L. Cheng, C. Tiernan, G. Cooke, V. M. Rotello, Model systems for flavoenzyme activity: Site-isolated redox behavior in flavin-functionalized random polystyrene copolymers, Org. Lett., 2005, 7, 2551.

    Article  CAS  PubMed  Google Scholar 

  6. M. Gray, A. J. Goodmann, J. B. Carroll, K. Bardon, M. Markey, G. Cooke, V. M. Rotello, Model systems for flavoenzyme activity: interplay of hydrogen bonding and aromatic stacking in cofactor redox modulation, Org. Lett., 2004, 6, 385.

    Article  CAS  PubMed  Google Scholar 

  7. S. M. Butterfield, C. M. Goodman, V. M. Rotello, M. L. Waters, A peptide flavoprotein mimic: flavin recognition and redox potential modulation in water by a designed beta hairpin, Angew. Chem., Int. Ed., 2004, 43, 724.

    Article  CAS  Google Scholar 

  8. F. Guo, B. H. Chang, C. J. Rizzo, An N1-hydrogen bonding model for flavin coenzyme, Bioorg. Med. Chem. Lett., 2002, 12, 151.

    Article  CAS  PubMed  Google Scholar 

  9. C. Behrens, M. Ober, T. Carell, Excess electron transfer in flavin-capped DNA-hairpins, Eur. J. Org. Chem., 2002, 3281.

    Google Scholar 

  10. J. Butenandt, R. Epple, E.-U. Wallenborn, A. P. M. Eker, V. Gramlich, T. Carell, A comparative repair study of thymine- and uracil-photodimers with model compounds and a photolyase repair enzyme, Chem.–Eur. J., 2000, 6, 62.

    Article  CAS  PubMed  Google Scholar 

  11. V. M. Rotello, Model systems for redox cofactor activity, Curr. Opin. Chem. Biol., 1999, 3, 747.

    Article  CAS  PubMed  Google Scholar 

  12. R. Deans, V. M. Rotello, Model Systems for Flavoenzyme Activity. Molecular Recognition of Flavin at the Polymer-Liquid Interface, J. Org. Chem., 1997, 62, 4528.

    Article  CAS  PubMed  Google Scholar 

  13. E. Breinlinger, A. Niemz, V. M. Rotello, Model Systems for Flavoenzyme Activity. Stabilization of the Flavin Radical Anion through Specific Hydrogen Bond Interactions, J. Am. Chem. Soc., 1995, 117, 5379.

    Article  CAS  Google Scholar 

  14. Y. Imada, T. Kitagawa, T. Ohno, H. Iida, T. Naota, Neutral flavins: green and robust organocatalysts for aerobic hydrogenation of olefins, Org. Lett., 2010, 12, 32–35.

    Article  CAS  PubMed  Google Scholar 

  15. J. Piera, J.-E. Bäckvall, Katalytische Oxidation von organischen Substraten durch molekularen Sauerstoff und Wasserstoffperoxid über einen mehrstufigen Elektronentransfer - ein biomimetischer Ansatz, Angew. Chem., 2008, 120, 3558, (Angew. Chem., Int. Ed. 2008, 47, 3506).

    Article  Google Scholar 

  16. L. B. Baxová, R. Cibulka, F. Hampl, Organocatalytic sulfoxidation in micellar systems containing amphiphilic flavinium salts using hydrogen peroxide as a terminal oxidant, J. Mol. Catal. A: Chem., 2007, 277, 53.

    Article  CAS  Google Scholar 

  17. A. A. Lindén, M. Johansson, N. Hermanns, J.-E. Bäckvall, Efficient and selective sulfoxidation by hydrogen peroxide, using a recyclable flavin-[BMIm]PF6 catalytic system, J. Org. Chem., 2006, 71, 3849.

    Article  PubMed  CAS  Google Scholar 

  18. Y. Imada, H. Iida, S. Ono, Y. Masui, S.-I. Murahashi, Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: biomimetic green oxidation, Chem.–Asian J., 2006, 1, 136.

    Article  CAS  PubMed  Google Scholar 

  19. A. A. Lindén, N. Hermanns, S. Ott, L. Krüger, J.-E. Bäckvall, Preparation and redox properties of N,N,N-1,3,5-trialkylated flavin derivatives and their activity as redox catalysts, Chem.–Eur. J., 2005, 11, 112.

    Article  CAS  Google Scholar 

  20. Y. Imada, H. Iida, S.-I. Murahashi, T. Naota, An Aerobic, Organocatalytic, and Chemoselective Method for Baeyer–Villiger Oxidation, Angew. Chem., 2005, 117, 1732, Angew. Chem., Int. Ed. 2005, 44, 1704.

    Article  Google Scholar 

  21. Y. Imada, H. Iida, S. Ono, S.-I. Murahashi, Flavin catalyzed oxidations of sulfides and amines with molecular oxygen, J. Am. Chem. Soc., 2003, 125, 2868.

    Article  CAS  PubMed  Google Scholar 

  22. S.-I. Murahashi, S. Ono, Y. Imada, Asymmetric Baeyer–Villiger Reaction with Hydrogen Peroxide Catalyzed by a Novel Planar-Chiral Bisflavin, Angew. Chem., 2002, 114, 2472, Angew. Chem., Int. Ed. 2002, 41, 2366.

    Article  Google Scholar 

  23. K. Bergstad, J.-E. Bäckvall, Mild and Efficient Flavin-Catalyzed H2O2 Oxidation of Tertiary Amines to Amine N-Oxides, J. Org. Chem., 1998, 63, 6650.

    Article  CAS  Google Scholar 

  24. C. Mazzini, J. Lebreton, R. Furstoss, Flavin-catalyzed Baeyer–Villiger reaction of ketones: oxidation of cyclobutanones to.gamma. lactones using hydrogen peroxide, J. Org. Chem., 1996, 61, 8.

    Article  CAS  Google Scholar 

  25. S.-I. Murahashi, T. Oda, Y. Masui, Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide, J. Am. Chem. Soc., 1989, 111, 5002.

    Article  CAS  Google Scholar 

  26. S. Shinkai, Y.-I. Ishikawa, O. Manabe, Flavin-Zr4+ complex as oxidation catalyst, Chem. Lett., 1982, 809.

    Google Scholar 

  27. S. Ball, T. C. Bruice, Oxidation of amines by a 4a-hydroperoxyflavin, J. Am. Chem. Soc., 1980, 102, 6498.

    Article  CAS  Google Scholar 

  28. R. Lechner, B. König, Oxidation and deprotection of primary benzylamines by visible light flavin photocatalysis, Synthesis, 2010, 10, 1712–1718.

    Google Scholar 

  29. H. Schmaderer, P. Hilgers, R. Lechner, B. König, Photo-oxidation of benzyl alcohols with immobilized flavins, Adv. Synth. Catal., 2009, 351, 163.

    Article  CAS  Google Scholar 

  30. J. Svoboda, H. Schmaderer, B. König, Thiourea-Enhanced Flavin Photo-oxidation of Benzyl Alcohol, Chem.–Eur. J., 2008, 14, 1854.

    Article  CAS  PubMed  Google Scholar 

  31. W. A. Massad, Y. Barbieri, M. Romero, N. A. Garcia, Vitamin B2-sensitized photo-oxidation of dopamine, Photochem. Photobiol., 2008, 84, 1201.

    Article  CAS  PubMed  Google Scholar 

  32. R. Cibulka, R. Vasold, B. König, Catalytic photo-oxidation of 4-methoxybenzyl alcohol with a flavin-zinc(II)-cyclen complex, Chem.–Eur. J., 2004, 10, 6223.

    Article  CAS  Google Scholar 

  33. O. Lu, G. Bucher, W. Sander, Photoinduced interactions between oxidized and reduced lipoic acid and riboflavin (vitamin B2), ChemPhysChem, 2004, 5, 47.

    Article  CAS  PubMed  Google Scholar 

  34. C. B. Martin, M.-L. Tsao, C. M. Hadad, M. S. Platz, The reaction of triplet flavin with indole. A study of the cascade of reactive intermediates using density functional theory and time resolved infrared spectroscopy, J. Am. Chem. Soc., 2002, 124, 7226.

    Article  CAS  PubMed  Google Scholar 

  35. S. Fukuzumi, K. Yasui, T. Suenobu, K. Ohkubo, M. Fujitsuka, O. Ito, Efficient Catalysis of Rare-Earth Metal Ions in Photoinduced Electron-Transfer Oxidation of Benzyl Alcohols by a Flavin Analogue, J. Phys. Chem. A, 2001, 105, 10501.

    Article  CAS  Google Scholar 

  36. E. Silva, A. M. Edwards, D. Pacheco, Visible light-induced photo-oxidation of glucose sensitized by riboflavin, J. Nutr. Biochem., 1999, 10, 181.

    Article  CAS  PubMed  Google Scholar 

  37. J. García, E. Silva, Flavin-sensitized photo-oxidation of amino acids present in a parenteral nutrition infusate: protection by ascorbic acid, J. Nutr. Biochem., 1997, 8, 341.

    Article  Google Scholar 

  38. K. Tatsumi, H. Ichikawa, S. Wada, Flavin-sensitized photo-oxidation of substituted phenols in natural water, J. Contam. Hydrol., 1992, 9, 207.

    Article  CAS  Google Scholar 

  39. S. Fukuzumi, K. Tanii, T. Tanaka, Protonated pteridine and flavin analogs acting as efficient and substrate-selective photocatalysts in the oxidation of benzyl alcohol derivatives by oxygen, J. Chem. Soc., Chem. Commun., 1989, 816.

    Google Scholar 

  40. S. O. Mansoorabadi, C. J. Thibodeaux, H. Liu, The diverse roles of flavin coenzymes - Nature’s most versatile thespians, J. Org. Chem., 2007, 72, 6329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chemistry and Biochemistry of Flavoenzymes, (Ed.: F. Müller), CRC, Boca Raton, 1991.

    Google Scholar 

  42. B. J. Fritz, S. Kasai, K. Matsui, Photochemical properties of flavin derivatives, Photochem. Photobiol., 1987, 45, 113.

    Article  CAS  Google Scholar 

  43. A. Bowd, P. Byrom, J. B. Hudson, J. H. Turnbull, Excited states of flavine coenzymes. III. Fluorescence, and phosphorescence emissions, Photochem. Photobiol., 1968, 8, 1.

    Article  CAS  Google Scholar 

  44. B. König, M. Pelka, H. Zieg, T. Ritter, H. Bouas-Laurent, R. Bonneau, J.-P. Desvergne, Photoinduced electron transfer in a phenothiazine-riboflavin dyad assembled by zinc-imide coordination in water, J. Am. Chem. Soc., 1999, 121, 1681.

    Article  Google Scholar 

  45. D. B. McCormick, Flavine derivatives via bromination of the 8-methyl substituent, J. Heterocycl. Chem., 1970, 7, 447.

    Article  CAS  Google Scholar 

  46. M. Sidheswaran, L. I. Tavlarides, Visible Light Photocatalytic Oxidation of Toluene Using a Cerium-Doped Titania Catalyst, Ind. Eng. Chem. Res., 2008, 47, 3346–3357.

    Article  CAS  Google Scholar 

  47. D. Worsley, A. Mills, K. Smith, M. G. Hutchings, Acid enhancement effect in the clean oxidation of toluenes photocatalyzed by TiO2, J. Chem. Soc., Chem. Commun., 1995, 1119–1120.

    Google Scholar 

  48. J. Rosenthal, T. D. Luckett, J. M. Hodgkiss, D. G. Nocera, Photocatalytic oxidation of hydrocarbons by a bis-iron(III)-mu-oxo Pacman porphyrin using O2 and visible light, J. Am. Chem. Soc., 2006, 128, 6546–6547.

    Article  CAS  PubMed  Google Scholar 

  49. A. Itoh, T. Kodama, S. Hashimoto, Y. Masaki, Oxidation of the methyl group at the aromatic nucleus with molecular oxygen in the presence of N-bromosuccinimide under photoirradiation, Synthesis, 2003, 2289–2291.

    Google Scholar 

  50. K. Ohkubo, K. Suga, K. Morikawa, S. Fukuzumi, elective oxygenation of ring-substituted toluenes with electron-donating and -withdrawing substituents by molecular oxygen via photoinduced electron transfer, J. Am. Chem. Soc., 2003, 125, 12850–12859.

    Article  CAS  PubMed  Google Scholar 

  51. K. Ohkubo, S. Fukuzumi, 100% Selective Oxygenation of p-Xylene to p-Tolualdehyde via Photoinduced Electron Transfer, Org. Lett., 2000, 2, 3647–3650.

    Article  CAS  PubMed  Google Scholar 

  52. Y. Mao, A. Bakac, Photocatalytic Oxidation of Toluene to Benzaldehyde by Molecular Oxygen, J. Phys. Chem., 1996, 100, 4219–4223.

    Article  CAS  Google Scholar 

  53. A. Albini, S. J. Spreti, Photochemically induced oxygenation of methylbenzenes, citenzyls, and pinacols in the presence of naphthalene-1,4-dicarbonitrile, J. Chem. Soc., Perkin Trans. 2, 1987, 1175–1179.

    Google Scholar 

  54. G. Porcal, S. G. Bertolotti, C. M. Previtali, M. C. Encinas, Electron transfer quenching of singlet and triplet excited states of flavins and lumichrome by aromatic and aliphatic electron donors, Phys. Chem. Chem. Phys., 2003, 5, 4123–4128.

    Article  CAS  Google Scholar 

  55. S. Fukuzumi, S. Kuroda, T. Tanaka, Catalytic effects of magnesium(2+) ion on electron transfer reactions of photo-excited flavin analogs (3-methyl-10-phenyl-5-deazaisoalloxazines and 3-methyl-10-phenylisoalloxazine) with methyl and methoxy substituted benzenes, Chem. Lett., 1984, 417–420.

    Google Scholar 

  56. R. Traber, E. Vogelmann, S. Schreiner, T. Werner, H. E. A. Kramer, Reactivity of excited states of flavin and 5-deazaflavin in electron transfer reactions, Photochem. Photobiol., 1981, 33, 41–48.

    Article  CAS  Google Scholar 

  57. It was shown in a previous study that flavin-mediated photo oxidation of benzyl alcohols in MeCN is accelerated by catalytic amounts of thiourea.4c This was not true for the oxidation of 4-methoxy toluene 3a in MeCN in the presence of 30 mol% thiourea.

  58. K. Tatsumi, H. Ichikawa, S. Wada, Flavin-sensitized photo-oxidation of substituted phenols in natural water, J. Contam. Hydrol., 1992, 9, 207–219.

    Article  CAS  Google Scholar 

  59. Flavin-mediated photo oxidation of phenols gave full conversion of starting phenols, but no products could be detected with GC-MS; unpublished results.

  60. P. Neta, H. Zemel, V. Madhavan, R. W. Fessenden, Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds, J. Am. Chem. Soc., 1977, 99, 163–164.

    Article  CAS  Google Scholar 

  61. J. Baier, T. Maisch, M. Maier, E. Engel, M. Landthaler, W. Bäumler, Singlet oxygen generation by UVA light exposure of endogenous photosensitizers, Biophys. J., 2006, 91, 1452–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. R. Huang, E. Choe, D. B. Min, Effects of riboflavin photosensitized oxidation on the volatile compounds of soymilk, J. Food Sci., 2006, 69, C733–738.

    Article  Google Scholar 

  63. M. Sikorski, E. Sikorska, R. G. Moreno, J. L. Bourdelande, D. R. Worrall, Photophysics of methyl substituted alloxazines in water: efficiency of singlet oxygen generation, J. Photochem. Photobiol., A, 2002, 149, 39–44.

    Article  CAS  Google Scholar 

  64. J. M. King, D. B. Min, Riboflavin-photosensitized singlet oxygen oxidation product of vitamin D2, J. Am. Oil Chem. Soc., 2002, 79, 983–987.

    Article  CAS  Google Scholar 

  65. P. C. Joshi, Comparison of the DNA-damaging property of photosensitised riboflavin via singlet oxygen (1O2) and superoxide radical O2-. mechanisms, Toxicol. Lett., 1985, 26, 211–217.

    Article  CAS  PubMed  Google Scholar 

  66. K. I. Salokhiddinov, I. M. Byteva, G. P. Gurinovich, Zh. Prikl. Spektrosk., 1981, 5, 892–897. and references cited.

    Google Scholar 

  67. When 0.001 m HCl was used as solvent instead of H2O, 29% yield 4a and when 0.001 m NaOH was used 25% yield of 4a were obtained after 10 min of irradiation.

  68. P. Huszthy, G. Iszó, K. Lempert, M. Katjár-Peredy, M. Györ, A. Rockenbauer, J. Tamàs, Single electron transfer initiated thermal reactions of arylmethyl halides. Part 14. The reaction of triphenylmethyl halides with tributylphosphine and tributylamine in apolar solvents, J. Chem. Soc., Perkin Trans. 2, 1989, 1513–1520.

    Google Scholar 

  69. P. Huszthy, G. Iszó, K. Lempert, M. Katjár-Peredy, M. Györ, A. Rockenbauer, Single-electron-transfer-initiated thermal reactions of arylmethyl halides. Part 15. The reaction of triphenylmethyl bromide with potassium O-ethyl dithiocarbonate (Potassium xanthate) in benzene and cumene. A note of caution on the application of the radical trap dicyclohexylphosphine as a probe for electron-transfer-initiated reactions of triphenylmethyl halides, J. Chem. Soc., Perkin Trans. 2, 1990, 2009–2015.

    Google Scholar 

  70. R. Akaba, M. Kamata, H. Itoh, A. Nakao, S. Goto, K.-I. Saito, A. Negishi, H. Sakuragi, K. Tokumaru, Photoinduced electron-transfer oxygenation of arylalkanes. Generation and oxygenation pathways of benzylic-type free radicals from the cation radical deprotonation, Tetrahedron Lett., 1992, 33, 7011–7014.

    Article  CAS  Google Scholar 

  71. C. W. M. Kay, E. Schleicher, A. Kupping, H. Hofner, W. Rüdiger, M. Schleicher, M. Fischer, A. Bacher, S. Weber, G. Richter, Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin, J. Biol. Chem., 2003, 278, 10973–10982.

    Article  CAS  PubMed  Google Scholar 

  72. R. Bittl, C. W. M. Kay, S. Weber, P. Hegemann, Irreversible photoreduction of flavin in a mutated Phot-LOV1 domain, Biochemistry, 2003, 42, 8506–8512.

    Article  CAS  PubMed  Google Scholar 

  73. T. Kottke, B. Dick, R. Fedorov, I. Schlichting, R. Deutzmann, P. Hegemann, Characterization of a flavin radical product in a C57M mutant of a LOV1 domain by electron paramagnetic resonance, Biochemistry, 2003, 42, 9854–9862.

    Article  CAS  PubMed  Google Scholar 

  74. C. B. Martin, M.-L. Tsao, C. M. Hadad, M. S. Platz, The reaction of triplet flavin with indole. A study of the cascade of reactive intermediates using density functional theory and time resolved infrared spectroscopy, J. Am. Chem. Soc., 2002, 124, 7226–7234.

    Article  CAS  PubMed  Google Scholar 

  75. For the synthesis and spectroscopic characterization of C4a and N5 substituted flavins see: F. Müller, Flavin radicals: chemistry and biochemistry, Free Radical Biol. Med., 1987, 3, 215–230. and references therin.

    Article  Google Scholar 

  76. M. Heinrich, P. Hemmerich, Substitution of the flavin chromophore with lipophilic side chains: a novel membrane redox label, J. Membr. Biol., 1981, 60, 143–153.

    Article  Google Scholar 

  77. S. Gishla, B. Entsch, V. Massey, M. Husein, On the structure of flavin-oxygen intermediates involved in enzymatic reactions, Eur. J. Biochem., 1977, 76, 139–148.

    Article  Google Scholar 

  78. S. Gishla, U. Hartmann, P. Hemmerich, F. Müller, Flavine series.XVIII. Reductive, alkylation of the flavine nucleus. Structure and reactivity of dihydroflavines, Liebigs Ann. Chem., 1973, 1388–1415.

    Google Scholar 

  79. F. Müller, M. Brüstlein, P. Hemmerich, V. Massey, W. H. Walker, Light-absorption studies on neutral flavin radicals, Eur. J. Biochem., 1972, 25, 573–580.

    Article  PubMed  Google Scholar 

  80. W. H. Walker, P. Hemmerich, Light-induced alkylation and dealkylation of the flavin nucleus. Stable dihydroflavins: spectral course and mechanism of formation, Eur. J. Biochem., 1970, 13, 258–266.

    Article  CAS  PubMed  Google Scholar 

  81. W. H. Walker, P. Hemmerich, V. Massey, Reductive photoalkylation of flavin nuclei and flavin-catalyzed photodecarboxylation of phenylacetate, Helv. Chim. Acta, 1967, 50, 2269–2279.

    Article  CAS  PubMed  Google Scholar 

  82. A. M. D. P. Nicholas, D. R. Arnold, Thermochemical parameters for organic radicals and radical ions. Part 1. The estimation of the pKa of radical cations based on thermochemical calculations, Can. J. Chem., 1982, 60, 2165–2179.

    Article  CAS  Google Scholar 

  83. M. M. Green, S. L. Mielke, T. Mukhopadhyay, Interconversion between the cation radicals of toluene and cycloheptatriene: an evaluation of the difference between the gas phase and solution, J. Org. Chem., 1984, 49, 1276–1278.

    Article  CAS  Google Scholar 

  84. C. Russo-Caia, S. Steenken, Photo- and radiation-chemical production of radical cations of methylbenzenes and benzyl alcohols and their reactivity in aqueous solution, Phys. Chem. Chem. Phys., 2002, 4, 1478–1485.

    Article  CAS  Google Scholar 

  85. Surprisingly, 3,4-methoxy toluene and 3-methoxy toluene could not be oxidized under the applied experimental conditions. A likely rational for this observation is the significant slower deprotonation rate of the benzylradical cation of 3,4-methoxy toluene and the higher oxidation potential of 3-methoxy toluene (peak potentials were measured to be 1.65 V vs. SCE for 4-methoxy toluene 3a and 1.77 V vs. SCE for 3-methoxy toluene in degassed MeCN 0.1 M NBu4BF4 at a scanning speed of 0.1 V s-1); see reference 8c and (a) E. Baciocchi, M. Bietti, O. Lanzalunga, Fragmentation reactions of radical cations, J. Phys. Org. Chem., 2006, 19, 467–478.

    Article  CAS  Google Scholar 

  86. E. Baciocchi, M. Bietti, O. Lanzalunga, Mechanistic aspects of beta-bond-cleavage reactions of aromatic radical cations, Acc. Chem. Res., 2000, 33, 243–251. and references therein.

    Article  CAS  PubMed  Google Scholar 

  87. I. Ahmad, G. Tollin, Solvent effects of flavin electron transfer reactions, Biochemistry, 1981, 20, 5925–5928.

    Article  CAS  PubMed  Google Scholar 

  88. W.-R. Knappe, Photochemistry of 10-phenylisoalloxazine. Intramolecular singlet and intermolecular triplet reactions, Chem. Ber., 1974, 107, 1614–1636.

    Article  CAS  Google Scholar 

  89. Q. H. Gibson, J. W. Hastings, Oxidation of reduced flavine mononucleotide by molecular oxygen, Biochem. J., 1962, 83, 368–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. H. Gutfreund, J. M. Sturtevant, Steps in the oxidation of xanthine to uric acid catalyzed by milk xanthine oxidase, Biochem. J., 1959, 73, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. R. S. Murthy, M. Bio, Y. You, Low energy light-triggered oxidative cleavage of olefins, Tetrahedron Lett., 2009, 50, 1041–1044.

    Article  CAS  Google Scholar 

  92. K. Feng, L.-Z. Wu, M.-L. Tu, L.-P. Zhang, C.-H. Tung, RA-200 resin-supported platinum(II) complex for photo-oxidation of olefins, Tetrahedron, 2007, 63, 4907–4911.

    Article  CAS  Google Scholar 

  93. K. Feng, R.-Y. Zhang, L.-Z. Wu, B. Tu, M.-L. Peng, L.-P. Zhang, D. Zhao, C.-H. Tung, Photo-oxidation of olefins under oxygen in platinum(II) complex-loaded mesoporous molecular sieves, J. Am. Chem. Soc., 2006, 128, 14685–14690.

    Article  CAS  PubMed  Google Scholar 

  94. M. Hara, S. Samori, C. Xichen, M. Fujitsuka, T. Majima, Effect of oxygen on the formation and decay of stilbene radical cation during the resonant two-photon ionization, J. Org. Chem., 2005, 70, 4370–4374.

    Article  CAS  PubMed  Google Scholar 

  95. A. Itoh, T. Kodama, Y. Masaki, S. Inagaki, Oxidative cleavage of the double bonds of styrenes with a combination of mesoporous silica FSM-16 and I2 under photoirradiation, Synlett, 2002, 522–524.

    Google Scholar 

  96. H.-R. Li, L.-Z. Wu, C.-H. Tung, Controllable Selectivity of Photosensitized Oxidation of Olefins Included in Vesicles, Tetrahedron, 2000, 56, 7437–7442.

    Article  CAS  Google Scholar 

  97. X. Li, V. Ramamurthy, Electron transfer reactions within zeolites: photo-oxidation of stilbenes, Tetrahedron Lett., 1996, 37, 5235–5238.

    Article  CAS  Google Scholar 

  98. U. T. Bhalerao, M. Sridhar, Novel photo-oxidation of alkenes sensitized by p-dimethoxybenzene, Tetrahedron Lett., 1993, 34, 4341–4342.

    Article  CAS  Google Scholar 

  99. F. D. Lewis, A. M. Bedell, R. E. Dykstra, J. E. Elbert, I. R. Gould, S. Farid, Photochemical generation, isomerization, and oxygenation of stilbene cation radicals, J. Am. Chem. Soc., 1990, 112, 8055–8064.

    Article  CAS  Google Scholar 

  100. J. Eriksen, C. S. Foote, Electron-transfer photooxygenation. 5. Oxidation of phenyl-substituted alkenes sensitized by cyanoanthracenes, J. Am. Chem. Soc., 1980, 102, 6083–6088.

    Article  CAS  Google Scholar 

  101. J. Eriksen, C. S. Foote, T. L. Parker, Photosensitized oxygenation of alkenes and sulfides via a non-singlet-oxygen mechanism, J. Am. Chem. Soc., 1977, 99, 6455–6456.

    Article  CAS  Google Scholar 

  102. H. L. Needles, R. P. Seiber, Photo-oxidation of disodium 4,4’-diacetamidostilbene-2,2’-disulfonate. Reply to comments, Text. Res. J., 1974, 44, 183–184.

    Article  CAS  Google Scholar 

  103. A. Gordon-Walker, G. K. Radda, Flavin-photosensitized reactions of retinol and stilbene, Biochem. J., 1970, 120, 673–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. S. Fukuzumi, K. Tanii, T. Tanaka, Flavin-sensitized photo-oxidation of unsaturated fatty acids, J. Chem. Soc., Perkin Trans. 2, 1989, 2103–2108.

    Google Scholar 

  105. N. Berenjian, P. de Mayo, F. H. Phoenix, A. C. Weedon, Photosensitized oxidation of acetylenes, Tetrahedron Lett., 1979, 20, 4179–4182.

    Article  Google Scholar 

  106. X. Wu, A. P. Davis, A. J. Fry, Electrocatalytic oxidative cleavage of electron-deficient substituted stilbenes in acetonitrile-water employing a new high oxidation potential electrocatalyst. An electrochemical equivalent of ozonolysis, Org. Lett., 2007, 9, 5633–5636.

    Article  CAS  PubMed  Google Scholar 

  107. S. M. Halas, K. Okyne, A. J. Fry, Anodic oxidation of stilbenes bearing electron-withdrawing ring substituents, Electrochim. Acta, 2003, 48, 1837–1844.

    Article  CAS  Google Scholar 

  108. T. Majima, S. Tojo, A. Ishida, S. Takamuku, Cis-Trans Isomerization and Oxidation of Radical Cations of Stilbene Derivatives, J. Org. Chem., 1996, 61, 7793–7800. and references therein.

    Article  CAS  PubMed  Google Scholar 

  109. M. Mohr, H. Zipse, Does the cationic or the radical character dominate the reactivity of alkene radical cations towards solvent molecules?, Phys. Chem. Chem. Phys., 2001, 3, 1246–1252.

    Article  CAS  Google Scholar 

  110. L. J. Johnston, N. P. Schepp, Reactivities of radical cations: characterization of styrene radical cations and measurements of their reactivity toward nucleophiles, J. Am. Chem. Soc., 1993, 115, 6564–6571.

    Article  CAS  Google Scholar 

  111. M. K. Eberhardt, W. Velasco, Oxidative cleavage of trans-stilbene in acetonitrile/water solutions, Tetrahedron Lett., 1992, 33, 1165–1168.

    Article  CAS  Google Scholar 

  112. K.-D. Warzecha, H. Görner, A. G. Griesbeck, Photoinduced decarboxylative benzylation of phthalimide triplets with phenyl acetates: a mechanistic study, J. Phys. Chem. A, 2006, 110, 3356–3363.

    Article  CAS  PubMed  Google Scholar 

  113. A. Itoh, T. Kodama, S. Inagaki, Y. Masaki, Oxidative photodecarboxylation of.alpha.-hydroxycarboxylic acids and phenylacetic acid derivatives with FSM-16, Org. Lett., 2000, 2, 331–333.

    Article  CAS  PubMed  Google Scholar 

  114. M. H. Habibi, S. Farhadi, Photodecarboxylation of arylacetic acids induced by light-sensitive Hg2F2, Tetrahedron Lett., 1999, 40, 2821–2824.

    Article  CAS  Google Scholar 

  115. S. Steenken, C. J. Warren, B. C. Gilbert, Generation of radical cations from naphthalene and some derivatives, both by photoionization and reaction with SO4-: formation and reactions studied by laser flash photolysis, J. Chem. Soc., Perkin Trans. 2, 1990, 335–342.

    Google Scholar 

  116. Y. Maki, M. Sako, I. Oyabu, T. Murase, Y. Kitade, K. Hirota, Photo-oxidative decarboxylation of phenylacetic acids induced by pyrimido[5,4-gpteridine 10-oxide involving a single-electron-transfer process in both stages, J. Chem. Soc., Chem. Commun., 1989, 1780–1782.

    Google Scholar 

  117. Y. Maki, M. Sako, I. Oyabu, S. Ohara, M. Sako, Y. Kitade, K. Hirota, Photo-oxidative decarboxylation of indole-3-acetic acid by pyrimido[5,4-gpteridine N-oxide as a biomimetic reaction, Chem. Pharm. Bull., 1989, 37, 3239–3242.

    Article  CAS  Google Scholar 

  118. M. H. Habibi, S. Farhadi, Photoinduced decarboxylation of aryl-substituted carboxylic acids using HgO. A new photo-Kolbe reaction pathway, J. Chem. Res. (S), 1998, 776–777.

    Google Scholar 

  119. K. Hideko, Absolute asymmetric photoreactions of acridines with diphenylacetic acid in their cocrystals, Mol. Cryst. Liq. Cryst., 2005, 440, 207–214.

    Article  CAS  Google Scholar 

  120. W. Haas, P. Hemmerich, Flavin-dependent substrate photo-oxidation as a chemical model of dehydrogenase action, Biochem. J., 1979, 181, 95–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. M. Yamasaki, T. Yamano, Evidence for formation of oxygenated flavins, Biochem. Biophys. Res. Commun., 1973, 51, 612–619.

    Article  CAS  PubMed  Google Scholar 

  122. M. Brüstlein, W.-R. Knappe, P. Hemmerich, Novel photoalkylation reactions on the flavin nucleus, Angew. Chem., 1971, 83, 854–856. Angew. Chem., Int. Ed. Engl. 1971, 10, 804-806.

    Article  Google Scholar 

  123. P. Hemmerich, V. Massey, G. Weber, Photo-induced benzyl substitution of flavins by phenylacetate: a possible model for flavoprotein catalysis, Nature, 1967, 213, 728–730.

    Article  CAS  PubMed  Google Scholar 

  124. G. D. Weatherby, D. O. Carr, Riboflavin-catalyzed photo-oxidative decarboxylation of dihydrophthalates, Biochemistry, 1970, 9, 344–350.

    Article  CAS  PubMed  Google Scholar 

  125. G. A. Eberlein, M. F. Powell, Photochemistry of flavins with sulfur-activated carboxylic acids: identification and reactions of the photoproducts, J. Am. Chem. Soc., 1984, 106, 3309–3317.

    Article  CAS  Google Scholar 

  126. M. Novak, A. Miller, T. C. Bruice, The mechanism of flavin 4a substitution which accompanies photolytic decarboxylation of.alpha.-substituted acetic acids. Carbanion vs. radical intermediates, J. Am. Chem. Soc., 1980, 102, 1465–1467.

    Article  CAS  Google Scholar 

  127. Diphenylacetic acid (0.03 mmol), RFT (0.03 mmol), dry MeCN (3 mL) under N2, irradiation with LED for 30 min (440 nm, 3 W).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard König.

Additional information

Electronic supplementary information (ESI) available: UV-Vis absorption spectra of RFT 1 during the photo-oxidation of 4-methoxytoluene 3a. See DOI: 10.1039/c0pp00202j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechner, R., Kümmel, S. & König, B. Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids. Photochem Photobiol Sci 9, 1367–1377 (2010). https://doi.org/10.1039/c0pp00202j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00202j

Navigation