Skip to main content
Log in

Porphycene-mediated photooxidation of benzylamines by visible light

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A variety of primary and secondary benzylic amines were oxidized efficiently to N-benzylidenebenzylamines and imines, respectively, using 2,7,12,17-tetrapropylporphycene (H2TPrPc) photocatalyst and blue light emitting diodes (LEDs). The photooxidation of 4-methoxybenzylamine in the presence of H2TPrPc and its tin(IV) complex Sn(TPrPc)Cl2 was studied in detail in order to show that operating mechanisms can be different depending on the photosensitizer type. Two experiments involving solvent deuterium isotope effect and competitive quenching with DABCO provide evidence for the singlet oxygen mechanism as the major pathway in the H2TPrPc-catalyzed reaction and the predominance of the direct electron transfer from the photoexcited dye to the amine when the Sn(TPrPc)Cl2 complex was used as a photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Meunier, Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage, Chem. Rev., 1992, 92, 1411–1456.

    Article  CAS  Google Scholar 

  2. A. Maldotti, A. Molinari, R. Amadelli, Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2, Chem. Rev., 2002, 102, 3811–3836.

    Article  CAS  PubMed  Google Scholar 

  3. K. Szacilowski, W. Macyk, A. Drzewiecka-Matuszek, A. Brindell, G. Stochel, Bioinorganic Photochemistry: Frontiers and Mechanisms, Chem. Rev., 2005, 105, 2647–2694.

    Article  CAS  PubMed  Google Scholar 

  4. E. Vogel, M. Köcher, H. Schmickler, J. Lex, J., Porphycene - a Novel Porphin Isomer, Angew. Chem., Int. Ed. Engl., 1986, 25, 257–259.

    Article  Google Scholar 

  5. S. Nonell, P. F. Aramendia, K. Heihoff, R. M. Negri, S. E. Braslavsky, Laser-Induced Optoacoustics Combined with Near-Infrared Emission: an Alternative Approach for the Determination of Intersystem Crossing Quantum Yields Applied to Porphycenes, J. Phys. Chem., 1990, 94, 5879–5883.

    Article  CAS  Google Scholar 

  6. J. Waluk, M. Müller, P. Swiderek, M. Köcher, E. Vogel, G. Hohlneicher, J. Michl, Electronic States of Porphycenes, J. Am. Chem. Soc., 1991, 113, 5511–5527.

    Article  CAS  Google Scholar 

  7. S. E. Braslavsky, M. Müller, D. O. Martire, S. Pörting, S. G. Bertolotti, S. Chakravorti, G. Koc-Weier, B. Knipp, K. Schaffner, Photophysical Properties of Porphycene Derivatives (18 p Porphyrinoids), J. Photochem. Photobiol., B, 1997, 40, 191–198.

    Article  CAS  Google Scholar 

  8. T. Hayashi, H. Dejima, T. Matsuo, H. Sato, D. Murata, Y. Hisaeda, Blue Myoglobin Reconstituted with an Iron Porphycene Shows Extremely High Oxygen Affinity, J. Am. Chem. Soc., 2002, 124, 11226–11227.

    Article  CAS  PubMed  Google Scholar 

  9. J. C. Stockert, M. Cañete, A. Juarranz, A. Villanueva, R. W. Horobin, J. I. Borrell, J. Teixidó, S. Nonell, Porphycenes: Facts and Prospects in Photodynamic Therapy of Cancer, Curr. Med. Chem., 2007, 14, 997–1026.

    Article  CAS  PubMed  Google Scholar 

  10. C. Bernard, J. P. Gisselbrecht, M. Gross, E. Vogel, M. Lausman, Redox Properties of Porphycenes and Metalloporphycenes. A Comparison with Porphyrins, Inorg. Chem., 1994, 33, 2393–2401.

    Article  CAS  Google Scholar 

  11. H. Shimakoshi, T. Baba, Y. Iseki, I. Aritome, A. Endo, C. Adachi, Y. Hisaeda, Photophysical and Photosensitizing Properties of Brominated Porphycenes, Chem. Commun., 2008, 2882–2884.

    Google Scholar 

  12. T. Baba, H. Shimakoshi, A. Endo, C. Adachi, Y. Hisaeda, Photophysical and Photocatalytic Properties of ß-Sulfonatoporphycenes, Chem. Lett., 2008, 37, 264–265.

    Article  CAS  Google Scholar 

  13. J. L. Sessler, A. Gebauer and E. Vogel, Porphyrin Isomers, in The Porphyrin Handbook, ed K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000, vol. 2, ch. 8, pp. 2–54.

    Google Scholar 

  14. D. P. Arnold, J. Blok, The Coordination Chemistry of Tin Porphyrin Complexes, Coord. Chem. Rev., 2004, 248, 299–319.

    Article  CAS  Google Scholar 

  15. C. J. P. Monteiro, M. M. Pereira, M. E. Azenha, H. D. Burrows, C. Serpa, L. G. Arnaut, M. J. Tapia, M. Sarakha, P. Wong-Wah-Chung, S. Navaratnam, A Comparative Study of Water Soluble 5,10,15,20-tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin and Its Metal Complexes as Efficient Sensitizers for Photodegradation of Phenols, Photochem. Photobiol. Sci., 2005, 4, 617–624.

    Article  CAS  PubMed  Google Scholar 

  16. W. Kim, J. Park, H. J. Jo, H.-J. Kim, W. Choi, Visible Light Photocatalysts Based on Homogeneous and Heterogenized Tin Porphyrins, J. Phys. Chem. C, 2008, 112, 491–499.

    Article  CAS  Google Scholar 

  17. M. Duan, J. Li, G. Mele, C. Wang, X. Lü, G. Vasapollo, F. Zhang, Photocatalytic Activity of Novel Tin Porphyrin/TiO2 Based Composites, J. Phys. Chem. C, 2010, 114, 7857–7862.

    Article  CAS  Google Scholar 

  18. D. Maeda, H. Shimakoshi, M. Abe, Y. Hisaeda, Syntheses and Photophysical Behavior of Porphyrin Isomer Sn(IV) Complexes, Inorg. Chem., 2009, 48, 9853–9860.

    Article  CAS  PubMed  Google Scholar 

  19. M. Taneda, D. Maeda, H. Shimakoshi, M. Abe, Y. Hisaeda, Preparations and Photosensitizing Properties of 2,7,12,17-Tetra-n-propylporphycenatotin(IV) Dihalide Complexes, Bull. Chem. Soc. Jpn., 2010, 83, 667–671.

    Article  CAS  Google Scholar 

  20. S.-I. Murahashi, Synthetic Aspects of Metal-Catalyzed Oxidations of Amines and Related Reactions, Angew. Chem., Int. Ed. Engl., 1995, 34, 2443–2465.

    Article  CAS  Google Scholar 

  21. J. M. Kim, M. A. Bogadan, P. S. Mariano, Mechanistic Analysis of the 3-Methyllumiflavin-Promoted Oxidative Deamination of Benzylamine. A Potential Model for Monoamine Oxidase Catalysis, J. Am. Chem. Soc., 1993, 115, 10591–10595.

    Article  CAS  Google Scholar 

  22. R. Neumann, M. Levin, Selective Aerobic Oxidative Dehydrogenation of Alcohols and Amines Catalyzed by a Supported Molybdenium-Vanadium Heteropolyanion Salt Na5PMo2V2O40, J. Org. Chem., 1991, 56, 5707–5710.

    Article  CAS  Google Scholar 

  23. M. Higuchi, I. Ikeda, T. Hirao, A Novel Synthetic Metal Catalytic System, J. Org. Chem., 1997, 62, 1072–1078.

    Article  CAS  Google Scholar 

  24. T. Hirao, S. Fukuhara, An Organic Catalytic System for Dehydrogenative Oxidation, J. Org. Chem., 1998, 63, 7534–7535.

    Article  CAS  PubMed  Google Scholar 

  25. S. S. Kim, S. S. Thakur, J. Y. Song, K.-H. Lee, Oxidative Coupling of Benzylamines into N-Benzylbenzaldimines with Mn(II)/tert-BuOOH, Bull. Korean Chem. Soc., 2005, 26, 499–501.

    Article  CAS  Google Scholar 

  26. S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano, M. Ueshima, A. Ogawa, Direct Conversion of Benzylamines to Imines via Atmospheric Oxidation in the Presence of VO(Hhpic)2 Catalyst, Tetrahedron Lett., 2010, 51, 2450–2452.

    Article  CAS  Google Scholar 

  27. A. Nishinaga, S. Yamazaki, T. Matsuura, Catalytic Dehydrogenation of Secondary Amines with Cobalt Schiff Base Complex-Oxygen System, Tetrahedron Lett., 1988, 29, 4115–4118.

    Article  CAS  Google Scholar 

  28. M. Shimizu, H. Orita, T. Hayakawa, K. Suzuki, K. Takehira, Oxidation of 1,2,3,4-Tetrahydroisoquinolines to 3,4-Dihydroisoquinolines with Molecular Oxygen Catalyzed by Copper(I) Chloride, Heterocycles, 1995, 41, 773–779.

    Article  CAS  Google Scholar 

  29. A. H. Éll, J. S. M. Samec, C. Brasse, J.-E. Bäckvall, Dehydrogenation of Aromatic Amines to Imines via Ruthenium-Catalyzed Hydrogen Transfer, Chem. Commun., 2002, 1144–1145.

    Google Scholar 

  30. S.-I. Murahashi, T. Naota, H. Taki, Ruthenium-Catalysed Oxidation of Secondary Amines to Imines Using t-Butyl Hydroperoxide, J. Chem. Soc., Chem. Commun., 1985, 613–614.

    Google Scholar 

  31. P. Müller, D. M. Gilabert, Oxidation of Amines to Imines with Hypervalent Iodine, Tetrahedron, 1988, 44, 7171–7175.

    Article  Google Scholar 

  32. J. S. M. Samec, A. H. Éll, C. Brasse, J.-E. Bäckvall, Efficient Ruthenium-Catalyzed Aerobic Oxidation of Amines by Using a Biomimetic Coupled Catalytic System, Chem.–Eur. J., 2005, 11, 2327–2334.

    Article  CAS  PubMed  Google Scholar 

  33. J.-R. Wang, Y. Fu, B.-B. Zhang, X. Cui, L. Liu, Q.-X. Guo, Palladium-Catalyzed Aerobic Oxidation of Amines, Tetrahedron Lett., 2006, 47, 8293–8297.

    Article  CAS  Google Scholar 

  34. H. Choi, M. P. Doyle, Oxidation of Secondary Amines Catalyzed by Dirhodium Caprolactamate, Chem. Commun., 2007, 745–747.

    Google Scholar 

  35. C. Nicolas, C. Herse, J. Lacour, Catalytic Aerobic Photooxidation of Primary Benzylic Amines Using Hindered Acridinium Salts, Tetrahedron Lett., 2005, 46, 4605–4608.

    Article  CAS  Google Scholar 

  36. K. Ohkubo, T. Nanjo, S. Fukuzumi, Photocatalytic Electron-Transfer Oxidation of Triphenylphosphine and Benzylamine with Molecular Oxygen via Formation of Radical Cations and Superoxide Ion, Bull. Chem. Soc. Jpn., 2006, 79, 1489–1500.

    Article  CAS  Google Scholar 

  37. J.-M. Kim, D.-K. Han, C.-W. Lee, S.-H. Kim, M.-S. Gong, K.-D. Ahn, Insoluble Polymer Catalysts for Photooxidation of Amine, Bull. Korean Chem. Soc., 1998, 19, 611–613.

    CAS  Google Scholar 

  38. The process is similar to the highly efficient photooxidation of primary and secondary amines to aldehydes in the presence of riboflavin tetraacetate as a photocatalyst in D2O-DMSO-d6 and blue light emitting LEDs: R. Lechner, B. König, Oxidation and Deprotection of Primary Benzylamines by Visible Light Flavin Photocatalysis, Synthesis, 2010, 1712–1

    Google Scholar 

  39. C. Schweitzer, R. Schmidt, Physical Mechanisms of Generation and Deactivation of Singlet Oxygen, Chem. Rev., 2003, 103, 1685–1757.

    Article  CAS  PubMed  Google Scholar 

  40. I. Saito, T. Matsuura, K. Inoue, Formation of Superoxide Ion via One-Electron Transfer from Electron Donors to Singlet Oxygen, J. Am. Chem. Soc., 1983, 105, 3200–3206.

    Article  CAS  Google Scholar 

  41. C. M. Haugen, W. R. Bergmark, D. G. Whitten, Singlet Oxygen Mediated Fragmentation of Amino Alcohols, 1,2-Diamines and Amino Ketones, J. Am. Chem. Soc., 1992, 114, 10293–10297.

    Article  CAS  Google Scholar 

  42. G. Cocquet, P. Rool, C. Ferroud, Photosensitized Oxidation by Single-Electron Transfer of Catharanthine and Vindoline: a Highly Regio- and Diastereoselective Photocyanation Reaction, J. Chem. Soc., Perkin Trans. 1, 2000, 2277–2281.

    Google Scholar 

  43. E. Baciocchi, T. Del Giacco, A. Lapi, Oxygenation of Benzyldimethylamine by Singlet Oxygen. Products and Mechanism, Org. Lett., 2004, 6, 4791–4794.

    Article  CAS  PubMed  Google Scholar 

  44. E. Baciocchi, T. Del Giacco, A. Lapi, Dual Pathways for the Desilylation of Silylamines by Singlet Oxygen, Org. Lett., 2006, 8, 1783–1786.

    Article  CAS  PubMed  Google Scholar 

  45. E. Baciocchi, T. Del Giacco, A. Lapi, Singlet Oxygen Promoted Carbon–Heteroatom Bond Cleavage in Dibenzyl Sulfides and Tertiary Dibenzylamines. Structural Effects and the Role of Exciplexes, J. Org. Chem., 2007, 72, 9582–9589.

    Article  CAS  PubMed  Google Scholar 

  46. M. Matsumoto, Y. Kitano, H. Kobayashi, H. Ikawa, Singlet Oxygenation of 1-Aminomethyl-1-tert-butyl-2-methoxy-2-(3-methoxy-phenyl)ethylenes: Marked Effect of Allylic Nitrogen on the Reaction Pathways and Chemoselectivity, Tetrahedron Lett., 1996, 37, 8191–8194.

    Article  CAS  Google Scholar 

  47. G. Jiang, J. Chen, J.-S. Huang, C.-M. Che, Highly Efficient Oxidation of Amines to Imines by Singlet Oxygen and Its Application in Ugi-Type Reactions, Org. Lett., 2009, 11, 4568–4571.

    Article  CAS  PubMed  Google Scholar 

  48. H. Schmaderer, P. Hilgers, R. Lechner, B. König, Photooxidation of Benzyl Alcohols with Immobilized Flavins, Adv. Synth. Catal., 2009, 351, 163–174.

    Article  CAS  Google Scholar 

  49. J. Svoboda, H. Schmaderer, B. König, Thiourea-Enhanced Flavin Photooxidation of Benzyl Alcohol, Chem.–Eur. J., 2008, 14, 1854–1865.

    Article  CAS  PubMed  Google Scholar 

  50. W. A. Massad, Y. Barbieri, M. Romero, N. A. Garcia, Vitamin B2-sensitized Photo-oxidation of Dopamine, Photochem. Photobiol., 2008, 84, 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  51. R. Cibulka, R. Vasold König, Catalytic Photooxidation of 4-Methoxybenzyl Alcohol with a Flavin-Zinc(II)-Cyclen Complex, Chem.–Eur. J., 2004, 10, 6223–6231.

    Article  CAS  Google Scholar 

  52. C. B. Martin, M.-L. Tsao, C. M. Hadad, M. S. Platz, The Reaction of Triplet Flavin with Indole. A Study of the Cascade of Reactive Intermediates Using Density Functional Theory and Time Resolved Infrared Spectroscopy, J. Am. Chem. Soc., 2002, 124, 7226–7234.

    Article  CAS  PubMed  Google Scholar 

  53. S. Fukuzumi, K. Tanii, T. Tanaka, Protonated Pteridine and Flavin Analogues Acting as Efficient and Substrate-Selective Photocatalysts in the Oxidation of Benzyl Alcohol Derivatives by Oxygen, J. Chem. Soc., Chem. Commun., 1989, 816–817.

    Google Scholar 

  54. D. Rehm, A. Weller, Kinetics and Mechanism of Electron Transfer in Fluorescence Quenching in Acetonitrile, Ber. Bunsenges. Phys. Chem., 1969, 73, 834–839.

    CAS  Google Scholar 

  55. F. Scandola, V. Balzani, G. B. Schuster, Free-Energy Relationships for Reversible and Irreversible Electron-Transfer Processes, J. Am. Chem. Soc., 1981, 103, 2519–2523.

    Article  CAS  Google Scholar 

  56. S. Prashanthi, P. H. Kumar, L. Wang, A. k. Perepogu, P. R. Bangal, Reductive Fluorescence Quenching of the Photoexcited Free Base meso-Tetrakis(pentafluorophenyl)porphyrins by Amines, J. Fluoresc., 2010, 20, 571–580.

    Article  CAS  PubMed  Google Scholar 

  57. J. R. Hurst, J. D. McDonald, G. B. Schuster, Lifetime of Singlet Oxygen in Solution Directly Determined by Laser Spectroscopy, J. Am. Chem. Soc., 1982, 104, 2065–2067.

    Article  CAS  Google Scholar 

  58. S. K. Silverman, C. S. Foote, Singlet Oxygen and Electron-Transfer Mechanisms in the Dicyanoanthracene-Sensitized Photooxidation of 2,3-Diphenyl-1,4-dioxene, J. Am. Chem. Soc., 1991, 113, 7672–7675.

    Article  CAS  Google Scholar 

  59. R. Bernstein, C. S. Foote, Singlet Oxygen Involvement in the Photochemical Reaction of C60 and Amines. Synthesis of an Alkyne-Containing Fullerene, J. Phys. Chem. A, 1999, 103, 7244–7247.

    Article  CAS  Google Scholar 

  60. R. H. Young, R. L. Martin, D. Feriozi, D. Brewer, R. Kayser, On the Mechanism of Quenching of Singlet Oxygen by Amines-III. Evidence, for a Charge-Transfer-Like Complex, Photochem. Photobiol., 1973, 17, 233–244.

    Article  CAS  Google Scholar 

  61. E. L. Clennan, L. J. Noe, T. Wen, E. Szneler, Solvent Effects on the Ability of Amines to Physically Quench Singlet Oxygen as Determined by Time-Resolved Infrared Emission Studies, J. Org. Chem., 1989, 54, 3581–3584.

    Article  CAS  Google Scholar 

  62. N. H. Martin, N. W. Allen, III, C. A. Cottle, C. K. Marschke, Jr., Semi-Empirical Molecular Orbital Calculations on the Interaction Between Singlet Oxygen and Amines: Modeling Charge Transfer Quenching, J. Photochem. Photobiol., A, 1997, 103, 33–38.

    Article  CAS  Google Scholar 

  63. D. M. Guldi, P. Neta, E. Vogel, Radiolytic Reduction of Tetrapropylporphycene and Its Iron, Cobalt, Nickel, Copper, and Tin Complexes, J. Phys. Chem., 1996, 100, 4097–4103.

    Article  CAS  Google Scholar 

  64. E. Vogel, M. Balci, K. Pramod, P. Koch, J. Lex, O. Ermer, 2,7,12,17-Tetrapropylporphycene - Counterpart of Octaethylporphyrin in the Porphycene Series, Angew. Chem., Int. Ed. Engl., 1987, 26, 928–931.

    Article  Google Scholar 

  65. D. Sánchez-García, J. L. Sessler, Porphycenes: Synthesis and Derivatives, Chem. Soc. Rev., 2008, 37, 215–232.

    Article  PubMed  Google Scholar 

  66. T. Baba, H. Shimakoshi, Y. Hidsaeda, Synthesis and Simple Separation of ß-Pyrrole Sulfonated Porphycenes, Tetrahedron Lett., 2004, 45, 5973–5975.

    Article  CAS  Google Scholar 

  67. J. P. Gisselbrecht, M. Gross, M. Köcher, M. Lausmann, E. Vogel, Redox Properties of Porphycenes and Metalloporphycenes as Compared with Porphyrins, J. Am. Chem. Soc., 1990, 112, 8618–8620.

    Article  CAS  Google Scholar 

  68. R. W. Wagner, D. S. Lawrence, J. S. Lindsey, An Improved Synthesis of Tetramesitylporphyrin, Tetrahedron Lett., 1987, 28, 3069–3070.

    Article  CAS  Google Scholar 

  69. M. J. Crossley, P. Thordarson, R. A.-S. Wu, Efficient Formation of Lipophilic Dihydroxotin(IV) Porphyrins and Bis-porphyrins, J. Chem. Soc., Perkin Trans. 1, 2001, 2294–2302.

    Google Scholar 

  70. K. Orito, A. Horibata, T. Nakamura, H. Ushito, H. Nagasaki, M. Yuguchi, S. Yamashita, M. Tokuda, Preparation of Benzolactams by Pd(OAc)2-Catalyzed Direct Aromatic Carbonylation, J. Am. Chem. Soc., 2004, 126, 14342–14343.

    Article  CAS  PubMed  Google Scholar 

  71. U. Megerle, E. Riedle, B. König, R. Lechner, Laboratory apparatus for the accurate, facile and rapid determination of visible light photoreaction quantum yields, unpublished results.

  72. K. C. Nicolaou, C. J. N. Mathison, T. Montagnon, o-Iodoxybenzoic Acid (IBX) as a Viable Reagent in the Manipulation of Nitrogen- and Sulfur-Containing Substrates: Scope, Generality, and Mechanism of IBX-Mediated Amine Oxidations and Dithiane Deprotections, J. Am. Chem. Soc., 2004, 126, 5192–5201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard König.

Additional information

Electronic supplementary information (ESI) available: UV/Vis spectra of H2TPrPc and Sn(TPrPc)Cl2 in CHCl3. See DOI: 10.1039/c0pp00192a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berlicka, A., König, B. Porphycene-mediated photooxidation of benzylamines by visible light. Photochem Photobiol Sci 9, 1359–1366 (2010). https://doi.org/10.1039/c0pp00192a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00192a

Navigation