Skip to main content

Advertisement

Log in

Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component, (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315–400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Schlesinger, Biogeochemistry: An Analysis of Global Change, Academic Press, San Diego, 1997.

    Google Scholar 

  2. F. S. Chapin, P. A. Matson and H. A. Mooney, Principles of Terrestrial Ecosystem Ecology, Springer, New York, 2002.

    Book  Google Scholar 

  3. G. B. Bonan, Forests and climate change: Forcings, feedbacks, and the climate benefits of forests, Science, 2008, 320, 1444–1449.

    Article  CAS  PubMed  Google Scholar 

  4. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn, M. Ilyas and S. Madronich, Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 2011, 10, DOF 10.1039/c0pp90034f.

  5. J. R. Herman, Global increase in UV irradiance during the past 30 years (1979-2008) estimated from satellite data, J. Geophys. Res, 2010, 115, D04203.

    Google Scholar 

  6. R. F. McKenzie, P. J. Aucamp, A. F. Bais, F. O. Björn and M. Ilyas, Changes in biologically-active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2007, 6, 218–231.

    Article  CAS  PubMed  Google Scholar 

  7. A. Andrady, P. J. Aucamp, A. F. Bais, C. L. Ballaré, F. O. Björn, J. F. Bornman, M. Caldwell, A. P. Cullen, D. J. Erickson, F. R. de Gruijl, D. P. Häder, M. Ilyas, G. Kulandaivelu, H. D. Kumar, J. Fongstreth, R. F. McKenzie, M. Norval, N. Paul, H. H. Redhwi, R. C. Smith, K. R. Solomon, B. Sulzberger, Y. Takizawa, X. Y. Tang, A. H. Teramura, A. Torikai, J. C. Van Der Feun, S. R. Wilson, R. C. Worrest and R. G. Zepp, Environmental effects of ozone depletion and its interactions with climate change: progress report, 2009, Photochem. Photobiol. Sci., 2010, 9, 275–294.

    Article  CAS  PubMed  Google Scholar 

  8. IPCC, Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 2007.

    Google Scholar 

  9. K. E. Trenberth and J. T. Fasullo, Global warming due to increasing absorbed solar radiation, Geophys. Res. Lett., 2009, 36, F07706.

    Article  Google Scholar 

  10. A. R. Ganguly, K. Steinhaeuser, D. J. Erickson, M. Branstetter, E. S. Parish, N. Singh, J. B. Drake and F. Buja, Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 15555–15559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. M. Caldwell, J. F. Bornman, G. F. Ballaré, S. D. Flint and G. Kulandaivelu, Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors, Photochem. Photobiol. Sci., 2007, 6, 252–266.

    Article  CAS  PubMed  Google Scholar 

  12. A. Andrady, P. J. Aucamp, A. F. Bais, C. F. Ballaré, F. O. Björn, J. F. Bornman, M. Caldwell, A. P. Cullen, D. J. Erickson, F. R. Degruijl, D. P. Häder, M. Ilyas, G. Kulandaivelu, H. D. Kumar, J. Fongstreth, R. F. McKenzie, M. Norval, N. Paul, H. H. Redhwi, R. C. Smith, K. R. Solomon, B. Sulzberger, Y. Takizawa, X. Tang, A. H. Teramura, A. Torikai, J. C. Van Der Feun, S. R. Wilson, R. C. Worrest and R. G. Zepp, Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2007, Photochem. Photobiol. Sci., 2008, 7, 15–27.

    Article  Google Scholar 

  13. A. Andrady, P. J. Aucamp, A. F. Bais, C. F. Ballaré, F. O. Björn, J. F. Bornman, M. Caldwell, A. P. Cullen, D. J. Erickson, F. R. Degruijl, D. P. Häder, M. Ilyas, G. Kulandaivelu, H. D. Kumar, J. Fongstreth, R. F. McKenzie, M. Norval, N. Paul, H. H. Redhwi, R. C. Smith, K. R. Solomon, B. Sulzberger, Y. Takizawa, X. Tang, A. H. Teramura, A. Torikai, J. C. Van Der Feun, S. R. Wilson, R. C. Worrest and R. G. Zepp, Environmental effects of ozone depletion and its interactions with climate change: Progress report 2008, Photochem. Photobiol. Sci., 2009, 8, 13–22.

    Article  PubMed  Google Scholar 

  14. C. F. Ballaré, C. M. Rousseaux, P. S. Searles, J. G. Zaller, C. V. Giordano, M. T. Robson, M. M. Caldwell, O. E. Sala and A. F. Scopel, Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina) An overview of recent progress, J. Photochem. Photobiol., B, 2001, 62, 67–77.

    Article  Google Scholar 

  15. K. K. Newsham and S. A. Robinson, Responses of plants in polar regions to UVB exposure: a meta-analysis, Global Change Biol, 2009, 15, 2574–2589.

    Article  Google Scholar 

  16. P. S. Searles, S. D. Flint and M. M. Caldwell, A meta analysis of plant field studies simulating stratospheric ozone depletion, Oecologia, 2001, 127, 1–10.

    Article  PubMed  Google Scholar 

  17. M. M. Caldwell, C. F. Ballaré, J. F. Bornman, S. D. Flint, F. O. Björn, A. H. Teramura, G. Kulandaivelu and M. Tevini, Terrestrial ecosystems increased solar ultraviolet radiation and interactions with other climatic change factors, Photochem. Photobiol. Sci., 2003, 2, 29–38.

    Article  CAS  PubMed  Google Scholar 

  18. J. R. Herman, Use of an improved RAF to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function, J. Geophys. Res., 2010, 115, D23119.

    Article  CAS  Google Scholar 

  19. F.-R. Fi, S.-F. Peng, B.-M. Chen and Y.-P. Hou, A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation, Acta Oecol, 2010, 36, 1–9.

    Article  Google Scholar 

  20. G. I. Jenkins, Signal transduction in responses to UV-B radiation, Annu. Rev. Plant Biol, 2009, 60, 407–431.

    Article  CAS  PubMed  Google Scholar 

  21. K. R. S. Snell, T. Kokubun, H. Griffiths, P. Convey, D. A. Hodgson and K. K. Newsham, Quantifying the metabolic cost to an Antarctic liverwort of responding to an abrupt increase in UVB radiation exposure, Global Change Biol, 2009, 15, 2563–2573.

    Article  Google Scholar 

  22. J. A. Zavala and D. A. Ravetta, The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina, Plant Ecol, 2002, 161, 185–191.

    Article  Google Scholar 

  23. C. M. Correia, E. F. V. Areal, M. S. Torres-Pereira and J. M. G. Torres-Pereira, Intraspecific variation in sensitivity to ultraviolet-B radiation in maize grown under field conditions - II Physiological and biochemical aspects, Field Crops Res., 1999, 62, 97–105.

    Article  Google Scholar 

  24. J. Torabinejad and M. M. Caldwell, Inheritance of UV-B tolerance in seven ecotypes of Arabidopsis thaliana F. Heynh and their F-l hybrids, J. Hered, 2000, 91, 228–233.

    Article  CAS  PubMed  Google Scholar 

  25. I. Kalbina and A. Strid, Supplementary ultraviolet-B irradiation reveals differences in stress responses between Arabidopsis thaliana ecotypes, Plant, Cell Environ., 2006, 29, 754–763.

    Article  CAS  Google Scholar 

  26. M. A. K. Jansen, B. Fe Martret and M. Koornneef, Variations in constitutive and inducible UV-B tolerance; dissecting photosystem II protection in Arabidopsis thaliana accessions, Physiol. Plant., 2010, 138, 22–34.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yao, Z. Xuan, Y. He, S. Futts, H. Korpelainen and C. Fi, Principal component analysis of intraspecific responses of tartary buckwheat to UV-B radiation under field conditions, Environ. Exp. Bot., 2007, 61, 237–245.

    Article  CAS  Google Scholar 

  28. G. Kalbin, J. Hidema, M. Brosché, T. Kumagai, J. F. Bornman and A. Strid, UV-B-induced DNA damage and expression of defence genes under UV-B stress: tissue-specific molecular marker analysis in leaves, Plant, Cell Environ., 2001, 24, 983–990.

    Article  CAS  Google Scholar 

  29. M. M. Izaguirre, A. F. Scopel, I. T. Baldwin and C. F. Ballaré, Convergent responses to stress Solar ultraviolet-B radiation and Manduca sexta herbivory elicit overlapping transcriptional responses in field-grown plants of Nicotiana longiflora, Plant Physiol, 2003, 132, 1755–1767.

    CAS  PubMed  Google Scholar 

  30. R. Mittler, Abiotic stress, the field environment and stress combination, Trends Plant Sci., 2006, 11, 15–19.

    Article  CAS  PubMed  Google Scholar 

  31. J. Kilian, D. Whitehead, J. Horak, D. Wanke, S. Weinl, O. Batistic, C. DAngelo, E. Bornberg-Bauer, J. Kudla and K. Harter, The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses, Plant J., 2007, 50, 347–363.

    Article  CAS  PubMed  Google Scholar 

  32. C. F. Ballaré, A. F. Scopel, A. E. Stapleton and M. J. Yanovsky, Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox, Plant Physiol, 1996, 112, 161–170.

    Article  PubMed  Google Scholar 

  33. L. C. Olsson, M. Veit, G. Weissenböck and J. F. Bornman, Differential flavonoid response to enhanced UV-B radiation in Brassica napus, Phytochemistry, 1998, 49, 1021–1028.

    Article  CAS  Google Scholar 

  34. K. G. Ryan, K. R. Markham, S. J. Bloor, J. M. Bradley, K. A. Mitchell and B. R. Jordan, UVB radiation induced increase in Quercetin: Kaempferol ratio in wild-type and transgenic lines of Petunia, Photochem. Photobiol., 1998, 68, 323–330.

    CAS  Google Scholar 

  35. M. Tattini, L. Guidi, L. Morassi-Bonzi, P. Pinelli, D. Remorini, E. Degl’Innocenti, C. Giordano, R. Massai and G. Agati, Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress, New Phytol., 2004, 163, 547–561.

    Article  CAS  Google Scholar 

  36. C. Clé, L. M. Hill, R. Niggeweg, C. R. Martin, Y. Guisez, E. Prinsen and M. A. K. Jansen, Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance, Phytochemistry, 2008, 69, 2149–2156.

    Article  PubMed  CAS  Google Scholar 

  37. M. M. Izaguirre, C. A. Mazza, A. Svatos, I. T. Baldwin and C. L. Ballaré, Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora, Ann. Bot., 2007, 99, 103–109.

    Article  CAS  PubMed  Google Scholar 

  38. P. V. Demkura, G. Abdala, I. T. Baldwin and C. L. Ballare, Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet b radiation on leaf phenolics and antiherbivore defense, Plant Physiol, 2010, 152, 1084–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J. H. Bassman, Ecosystem consequences of enhanced solar ultraviolet radiation: Secondary plant metabolites as mediators of multiple trophic interactions in terrestrial plant communities, Photochem. Photobiol, 2004, 79, 382–398.

    Article  CAS  PubMed  Google Scholar 

  40. M. R. Roberts and N. D. Paul, Seduced by the dark side: Integrating molecular and ecological perspectives onfence against pests and pathogens, New Phytol, 2006, 170, 677–699.

    Article  CAS  PubMed  Google Scholar 

  41. M. G. Bidart-Bouzat and A. Imeh-Nathaniel, Global change effects on plant chemical defenses against insect herbivores, J. Integr. Plant Biol., 2008, 50, 1339–1354.

    Article  CAS  PubMed  Google Scholar 

  42. A. Lavola, R. Julkunen-Tiitto, H. Roininen and P. Aphalo, Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites, Biochem. Syst. Ecol, 1998, 26, 1–12.

    Article  CAS  Google Scholar 

  43. F. Kuhlmann and C. Müller, UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids, Plant Biol., 2010, 12, 676–684.

    CAS  PubMed  Google Scholar 

  44. M. L. Bothwell, D. M. J. Sherbot and C. M. Pollock, Ecosystem responses to solar ultraviolet-B radiation: influence of trophic-level interactions, Science, 1994, 265, 97–100.

    Article  CAS  PubMed  Google Scholar 

  45. E. S. McCloud and M. R. Berenbaum, Stratospheric ozone depletion and plant-insect interactions: effects of UVB radiation on foliage quality of Citrus jambhiri for Trichoplusia ni, J. Chem. Ecol., 1994, 20, 525–539.

    Article  CAS  PubMed  Google Scholar 

  46. C. A. Mazza, J. Zavala, A. L. Scopel and C. L. Ballaré, Perception of solar UVB radiation by phytophagous insects: Behavioral responses and ecosystem implications, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 980–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. C. A. Mazza, M. M. Izaguirre, J. Zavala, A. L. Scopel and C. L. Ballaré, Insect perception of ambient ultraviolet-B radiation, Ecol. Lett., 2002, 5, 722–726.

    Article  Google Scholar 

  48. J. Li, M. L. M. Lim, Z. Zhang, Q. Liu, F. L. Chen and D. Li, Sexual dichromatism and male colour morph in ultraviolet-B reflectance in two populations of the jumping spider Phintella vittata (Araneae: Salticidae) from tropical China, Biol. J. Linn. Soc, 2008, 94, 7–20.

    Article  Google Scholar 

  49. J. Li, Z. Zhang, F. Liu, Q. Liu, W. Gan, J. Chen, M. L. M. Lim and D. Li, UVB-based mate-choice cues used by females of the jumping spider Phintella vittata, Curr. Biol, 2008, 18, 699–703.

    CAS  Google Scholar 

  50. K. Ohtsuka and M. Osakabe, Deleterious effects of UV-B radiation on herbivorous spider mites: they can avoid it by remaining on lower leaf surfaces, Environ. Entomol, 2009, 38, 920–929.

    Article  PubMed  Google Scholar 

  51. C. A. Mazza, M. M. Izaguirre, J. Curiale and C. L. Ballaré, A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum, Proc. R. Soc. B, 2010, 277, 367–373.

    Article  CAS  PubMed  Google Scholar 

  52. A. Onzo, M. W. Sabelis and R. Hanna, Effects of ultraviolet radiation on predatory mites and the role of refuges in plant structures, Environ. Entomol, 2010, 39, 695–701.

    Article  PubMed  Google Scholar 

  53. S. Volynchik, M. Plotkin, D. J. Bergman and J. S. Ishay, Hornet flight activity and its correlation with UVB radiation, temperature and relative humidity, Photochem. Photobiol, 2008, 84, 81–85.

    CAS  PubMed  Google Scholar 

  54. B. A. Han, L. B. Kats, R. C. Pommerening, R. P. Ferrer, M. Murry-Ewers and A. R. Blaustein, Behavioral avoidance of ultraviolet-B radiation by two species of neotropical poison-dart frogs, Biotropica, 2007, 39, 433–435.

    Article  Google Scholar 

  55. M. C. Rousseaux, C. L. Ballaré, A. L. Scopel, P. S. Searles and M. M. Caldwell, Solar ultraviolet-B radiation affects plant-insect interactions in a natural ecosystem of Lierra del Fuego (Southern Argentina), Oecologia, 1998, 116, 528–535.

    Article  PubMed  Google Scholar 

  56. C. Caputo, M. Rutitzky and C. L. Ballaré, Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L): Impacts on oviposition and involvement of the jasmonic acid pathway, Oecologia, 2006, 149, 81–90.

    Article  PubMed  Google Scholar 

  57. A. Foggo, S. Higgins, J. J. Wargent and R. A. Coleman, Lri-trophic consequences of UV-B exposure: Plants, herbivores and parasitoids, Oecologia, 2007, 154, 505–512.

    Article  PubMed  Google Scholar 

  58. D. J. Bergvinson, J. T. Arnason, R. I. Hamilton, S. Lachibana and G. H. N. Lowers, Putative role of photodimerized phenolic-acids in maize resistance to Ostrinia nubilalis (Lepidoptera, Pyralidae), Environ. Entomol, 1994, 23, 1516–1523.

    Article  CAS  Google Scholar 

  59. J. A. Zavala, A. L. Scopel and C. L. Ballaré, Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis, Plant Ecol, 2001, 156, 121–130.

    Article  Google Scholar 

  60. F. Kuhlmann and C. Müller, Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects, Environ. Exp. Bot., 2009, 66, 61–68.

    Article  CAS  Google Scholar 

  61. P. E. Hatcher and N. D. Paul, Lhe effect of elevated UV-B radiation on herbivory of pea by Autographa gamma, Entomol. Exp. Appl., 1994, 71, 227–233.

    Article  Google Scholar 

  62. M. C. Rousseaux, R. Julkunen-Liitto, P. S. Searles, A. L. Scopel, P. J. Aphalo and C. L. Ballaré, Solar UV-B radiation affects leaf quality and insect herbivory in the southern beech tree Nothofagus antarctica, Oecologia, 2004, 138, 505–512.

    PubMed  Google Scholar 

  63. R. L. Lindroth, R. W. Hofmann, B. D. Campbell, W. C. McNabb and D. Y. Hunt, Population differences in Trifolium repens L. response to ultraviolet-B radiation: Foliar chemistry and consequences for two lepidopteran herbivores, Oecologia, 2000, 122, 20–28.

    Article  CAS  PubMed  Google Scholar 

  64. J. Stratmann, Ultraviolet-B radiation co-opts defense signaling pathways, Trends Plant Sci., 2003, 8, 526–533.

    Article  CAS  PubMed  Google Scholar 

  65. J. W. Stratmann, B. A. Stelmach, E. W. Weiler and C. A. Ryan, UVB/UVA radiation activates a 48 kDa myelin basic protein kinase and potentiates wound signaling in tomato leaves, Photochem. Photobiol., 2000, 71, 116–123.

    Article  CAS  PubMed  Google Scholar 

  66. C. A. Elliger, Y. Wong, B. G. Chan and A. C. Waiss Jr, Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea), J. Chem. Ecol, 1981, 7, 753–758.

    Article  CAS  PubMed  Google Scholar 

  67. N. E. Stamp and L. L. Osier, Response of five insect herbivores to multiple allelochemicals under fluctuating temperatures, Entomol. Exp. Appl, 1998, 88, 81–96.

    Article  CAS  Google Scholar 

  68. E. Hoffland, M. Dicke, W. Van Lintelen, H. Dijkman and M. L. Van Beusichem, Nitrogen availability and defense of tomato against two-spotted spider mite, J. Chem. Ecol., 2000, 26, 2697–2711.

    Article  CAS  Google Scholar 

  69. M. M. Izaguirre, C. A. Mazza, M. Biondini, I. L. Baldwin and C. L. Ballaré, Remote sensing of future competitors: Impacts on plants defenses, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 7170–7174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. M. Leitner, W. Boland and A. Mithöfer, Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula, New Phytol., 2005, 167, 597–606.

    Article  CAS  PubMed  Google Scholar 

  71. P. Misra, A. Pandey, M. Liwari, K. Chandrashekar, O. P. Sidhu, M. H. Asif, D. Chakrabarty, P. K. Singh, P. K. Lrivedi, P. Nath and R. Luli, Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance, Plant Physiol., 2010, 152, 2258–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Brosché, M. A. Schuler, I. Kalbina, L. Connor and A. Strid, Gene regulation by low level UV-B radiation: Identification by DNA array analysis, Photochem. Photobiol. Sci., 2002, 1, 656–664.

    Article  PubMed  Google Scholar 

  73. J. A. Zavala, C. L. Casteel, E. H. DeLucia and M. R. Berenbaum, Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 5129–5133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. V. A. Pancotto, O. E. Sala, M. Cabello, N. I. Lopez, L. M. Robson, C. L. Ballaré, M. M. Caldwell and A. L. Scopel, Solar UV-B decreases decomposition in herbaceous plant litter in Lierra del Fuego, Argentina: potential role of an altered decomposer community, Global Change Biol, 2003, 9, 1465–1474.

    Article  Google Scholar 

  75. T. Kotilainen, J. Haimi, R. Tegelberg, R. Julkunen-Tiitto, E. Vapaavuori and P. J. Aphalo, Solar ultraviolet radiation alters alder and birch litter chemistry that in turn affects decomposers and soil respiration, Oecologia, 2009, 161, 719–728.

    Article  PubMed  Google Scholar 

  76. S. E. Lindow and M. T. Brandi, Microbiology of the phyllosphere, Appl. Environ. Microbiol., 2003, 69, 1875–1883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. H. Kadivar and A. E. Stapleton, Ultraviolet radiation alters maize phyllosphere bacterial diversity, Microb. Ecol., 2003, 45, 353–361.

    Article  CAS  PubMed  Google Scholar 

  78. A. E. Stapleton and S. J. Simmons, Plant control of phyllosphere diversity: Genotype interactions with ultraviolet-B radiation, in Microbial Ecology of Aerial Plant Surfaces, ed. N. S. Iacobellis, A. Collmer, S. W. Hutcheson, J. W. Mansfield, C. E. Morris, M. J., N. W. Schaad, D. E. Stead, G. Surico and M. Ullrich, Kluwer Academic CAB Internationals, Dordrecht, The Netherlands, 2006, pp. 223–239.

    Chapter  Google Scholar 

  79. T. S. Gunasekera and N. D. Paul, Ecological impact of solar ultraviolet-B (UV-B: 320-290 nm) radiation on Corynebacterium aquaticum and Xanthomonas sp colonization on tea phyllosphere in relation to blister blight disease incidence in the field, Lett. Appl. Microbiol, 2007, 44, 513–519.

    Article  CAS  PubMed  Google Scholar 

  80. P. Balint-Kurti, S. J. Simmons, J. E. Blum, C. L. Ballaré and A. E. Stapleton, Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection, Mol. Plant-Microbe Interact., 2010, 23, 473–484.

    Article  CAS  PubMed  Google Scholar 

  81. C. M. J. Pieterse, A. Leon-Reyes, S. Van Der Ent and S. C. M. Van Wees, Networking by small-molecule hormones in plant immunity, Nat. Chem. Biol, 2009, 5, 308–316.

    Article  CAS  PubMed  Google Scholar 

  82. D. Johnson, C. D. Campbell, J. A. Lee, T. V. Callaghan and D. Gwynn-Jones, Arctic microorganisms respond more to elevated UV-B radiation than C02, Nature, 2002, 416, 82–83.

    Article  CAS  PubMed  Google Scholar 

  83. P. S. Searles, B. R. Kropp, S. D. Flint and M. M. Caldwell, Influence of solar UV-B radiation on peatland microbial communities of southern Argentina, New Phytol, 2001, 152, 213–221.

    Article  Google Scholar 

  84. T. M. Robson, V. A. Pancotto, A. L. Scopel, S. D. Flint and M. M. Caldwell, Solar UV-B influences microfaunal community composition in a Tierra del Fuego peatland, Soil Biol. Biochem., 2005, 37, 2205–2215.

    Article  CAS  Google Scholar 

  85. R. Rinnan, M. M. Keinänen, A. Kasurinen, J. Asikainen, T. K. Kekki, T. Holopainen, H. Ro-Poulsen, T. N. Mikkelsen and A. Michelsen, Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass, Global Change Biol, 2005, 11, 564–574.

    Article  Google Scholar 

  86. R. Rinnan, A. M. Nerg, P. Ahtoniemi, H. Suokanerva, T. Holopainen, E. Kyro and E. Baath, Plant-mediated effects of elevated ultraviolet-B radiation on peat microbial communities of a subarctic mire, Global Change Biol, 2008, 14, 925–937.

    Article  Google Scholar 

  87. R. G. Zepp, D. J. Erickson III, N. D. Paul and B. Sulzberger, Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90037k.

  88. J. G. Zaller, M. M. Caldwell, S. D. Flint, A. L. Scopel, O. E. Sala and C. L. Ballaré, Solar UV-B radiation affects below-ground parameters in a fen ecosystem in Tierra del Fuego, Argentina: implications of stratospheric ozone depletion, Global Change Biol., 2002, 8, 867–871.

    Article  Google Scholar 

  89. P. Convey, P. J. A. Pugh, C. Jackson, A. W. Murray, C. T. Ruhland, F. S. Xiong and T. A. Day, Response of antarctic terrestrial microarthro-pods to long-term climate manipulations, Ecology, 2002, 83, 3130–3140.

    Article  Google Scholar 

  90. A. T. Austin and L. Vivanco, Plant litter decomposition in a semiarid ecosystem controlled by photodegradation, Nature, 2006, 442, 555–558.

    Article  CAS  PubMed  Google Scholar 

  91. A. T. Austin, P. I. Araujo and P. E. Leva, Interaction of position, litter type and pulsed water events on decomposition of grasses from the semiarid Patagonian steppe, Ecology, 2009, 90, 2642–2647.

    Article  PubMed  Google Scholar 

  92. L. A. Brandt, J. Y. King and D. G. Milchunas, Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem, Global Change Biol., 2007, 13, 2193–2205.

    Article  Google Scholar 

  93. A. T. Austin and C. L. Ballaré, Dual role of lignin in plant litter decomposition in terrestrial ecosystems, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 4618–4622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. L. Brandt, J. King, S. Hobbie, D. Milchunas and R. Sinsabaugh, The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient, Ecosystems, 2010, 13, 765–781.

    Article  CAS  Google Scholar 

  95. S. Rutledge, D. I. Campbell, D. Baldocchi and L. A. Schipper, Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter, Global Change Biol, 2010, 16, 3065–3074.

    Google Scholar 

  96. L. A. Brandt, C. Bohnet and J. Y. King, Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems, J. Geophys. Res. Biogeosci., 2009, 114, G02004.

    Google Scholar 

  97. M. J. Swift, O. W. Heal and J. M. Anderson, Decomposition in Terrestrial Ecosystems, University of California Press, Berkeley, 1979.

    Google Scholar 

  98. X. Tang, S. R. Wilson, K. R. Solomon and S. Madronich, Changes in tropospheric composition and air quality due to stratospheric ozone depletion and interactions with changes in climate, Photochem. Photobiol. Sci., 2011, 10, DOI: 10.1039/c0pp90039g.

  99. A. R. Ravishankara, J. S. Daniel and R. W. Portmann, Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century, Science, 2009, 326, 123–125.

    Article  CAS  PubMed  Google Scholar 

  100. P. Hari, M. Raivonen, T. Vesala, J. W. Munger, K. Pilegaard and M. Kulmala, Atmospheric science - Ultraviolet light and leaf emission of NOx, Nature, 2003, 422, 134–134.

    Article  CAS  PubMed  Google Scholar 

  101. M. Raivonen, B. Bonn, M. J. Sanz, T. Vesala, M. Kulmala and P. Hari, UV-induced NOy emissions from Scots pine: Could they originate from photolysis of deposited HNO3?, Atmos. Environ., 2006, 40, 6201–6213.

    Article  CAS  Google Scholar 

  102. F. Keppler, J. T. G. Hamilton, M. Brass and T. Rockmann, Methane emissions from terrestrial plants under aerobic conditions, Nature, 2006, 439, 187–191.

    Article  CAS  PubMed  Google Scholar 

  103. A. R. McLeod, S. C. Fry, G. J. Loake, D. J. Messenger, D. S. Reay, K. A. Smith and B. W. Yun, Ultraviolet radiation drives methane emissions from terrestrial plant pectins, New Phytol., 2008, 180, 124–132.

    Article  CAS  PubMed  Google Scholar 

  104. I. Vigano, H. van Weelden, R. Holzinger, F. Keppler, A. McLeod and T. Rockmann, Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components, Biogeosciences, 2008, 5, 937–947.

    Article  CAS  Google Scholar 

  105. R. E. R. Nisbet, R. Fisher, R. H. Nimmo, D. S. Bendall, P. M. Crill, A. V. Gallego-Sala, E. R. C. Hornibrook, E. Lopez-Juez, D. Lowry, P. B. R. Nisbet, E. F. Shuckburgh, S. Sriskantharajah, C. J. Howe and E. G. Nisbet, Emission of methane from plants, Proc. R. Soc. London, Ser. B, 2009, 276, 1347–1354.

    CAS  Google Scholar 

  106. D. J. Messenger, A. R. McLeod and S. C. Fry, The role of ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pectin, Plant, Cell Environ., 2009, 32, 1–9.

    Article  CAS  Google Scholar 

  107. Z. P. Wang, J. Gulledge, J. Q. Zheng, W. Liu, L. H. Li and X. G. Han, Physical injury stimulates aerobic methane emissions from terrestrial plants, Biogeosciences, 2009, 6, 615–621.

    Article  CAS  Google Scholar 

  108. Z. P. Wang, Y. Song, J. Gulledge, Q. Yu, H. S. Liu and X. G. Han, China’s grazed temperate grasslands are a net source of atmospheric methane, Atmos. Environ., 2009, 43, 2148–2153.

    Article  CAS  Google Scholar 

  109. A. A. Bloom, J. Lee-Taylor, S. Madronich, D. J. Messenger, P. I. Palmer, D. S. Reay and A. R. McLeod, Global methane emission estimates from ultraviolet irradiation of terrestrial plant foliage, New. Phytol., 2010, 187, 417–425.

    Article  CAS  PubMed  Google Scholar 

  110. A. F. Bais, N. Butchart, V. Eyring, D. W. Fahey, D. E. Kinnison, U. Langematz, B. Mayer, R. W. Portmann, E. Rozanov, P. Braesicke, A. J. Charlton-Perez, N. Y. Chubarova, S. B. Diaz, N. P. Gillett, M. A. Giorgetta, K. Komala, F. Lefevre, C. McLandress, J. Perlwitz, T. Peter and K. Shibata, Future Ozone and its Impact on Surface UV Scientific Assessment of Ozone Depletion: 2010, UNEP SAP Report No., Nairobi, 2011.

    Google Scholar 

  111. K. R. S. Snell, P. Convey and K. K. Newsham, Metabolic recovery of the Antarctic liverwort Cephaloziella varians during spring snowmelt, Polar Biol., 2007, 30, 1115–1122.

    Article  Google Scholar 

  112. G. K. Phoenix, D. Gwynn-Jones, T. V. Callaghan, D. Sleep and J. A. Lee, Effects of global change on a sub-Arctic heath: effects of enhanced UV-B radiation and increased summer precipitation, J. Ecol., 2001, 89, 256–267.

    Article  Google Scholar 

  113. S. Bokhorst, J. W. Bjerke, F. W. Bowles, J. Melillo, T. V. Callaghan and G. K. Phoenix, Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland, Global Change Biol., 2008, 14, 2603–2612.

    Article  Google Scholar 

  114. S. F. Bokhorst, J. W. Bjerke, H. Tommervik, T. V. Callaghan and G. K. Phoenix, Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event, J. Ecol., 2009, 97, 1408–1415.

    Article  Google Scholar 

  115. D.W.J. Thompson and S. Solomon, Interpretation of recent Southern Hemisphere climate change, Science, 2002, 296, 895–899.

    Article  CAS  PubMed  Google Scholar 

  116. H. K. Roscoe and J. D. Haigh, Influences of ozone depletion, the solar cycle and the QBO on the Southern Annular Mode, Q. J. R. Meteorol. Soc., 2007, 133, 1855–1864.

    Article  Google Scholar 

  117. J. L. Dunn and S. A. Robinson, Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion, Global Change Biol., 2006, 12, 2282–2296.

    Article  Google Scholar 

  118. J. D. Turnbull and S. A. Robinson, Accumulation of DNA damage in Antarctic mosses: correlations with ultraviolet-B radiation, temperature and turf water content vary among species, Global Change Biol., 2009, 15, 319–329.

    Article  Google Scholar 

  119. O. L. Phillips, L. Aragao, S. L. Lewis, J. B. Fisher, J. Lloyd, G. Lopez-Gonzalez, Y. Malhi, A. Monteagudo, J. Peacock, C. A. Quesada, G. Van Der Heijden, S. Almeida, I. Amaral, L. Arroyo, G. Aymard, T. R. Baker, O. Banki, L. Blanc, D. Bonal, P. Brando, J. Chave, A. C. A. de Oliveira, N. D. Cardozo, C. I. Czimczik, T. R. Feldpausch, M. A. Freitas, E. Gloor, N. Higuchi, E. Jimenez, G. Lloyd, P. Meir, C. Mendoza, A. Morel, D. A. Neill, D. Nepstad, S. Patino, M. C. Penuela, A. Prieto, F. Ramirez, M. Schwarz, J. Silva, M. Silveira, A. S. Thomas, H. ter Steege, J. Stropp, R. Vasquez, P. Zelazowski, E. A. Davila, S. Andelman, A. Andrade, K. J. Chao, T. Erwin, A. Di Fiore, E. Honorio, H. Keeling, T. J. Killeen, W. F. Laurance, A. P. Cruz, N. C. A. Pitman, P. N. Vargas, H. Ramirez-Angulo, A. Rudas, R. Salamao, N. Silva, J. Terborgh and A. Torres-Lezama, Drought sensitivity of the Amazon rainforest, Science, 2009, 323, 1344–1347.

    Article  CAS  PubMed  Google Scholar 

  120. M. E. Poulson, M. R. T. Boeger and R. A. Donahue, Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime, Photosynth. Res., 2007, 90, 79–90.

    Article  CAS  Google Scholar 

  121. B. L. Duan, Z. Y. Xuan, X. L. Zhang, H. Korpelainen and C. Y. Li, Interactions between drought, ABA application and supplemental UV-B in Populus yunnanensis, Physiol. Plant., 2008, 134, 257–269.

    Article  CAS  PubMed  Google Scholar 

  122. H. Y. Feng, S. W. Li, L. G. Xue, L. Z. An and X. F. Wang, The interactive effects of enhanced UV-B radiation and soil drought on spring wheat, S. Afr. J. Bot., 2007, 73, 429–434.

    Article  Google Scholar 

  123. I. Cechin, N. Corniani, T. D. Fumis and A. C. Cataneo, Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants, Radiat. Environ. Biophys., 2008, 47, 405–413.

    Article  CAS  PubMed  Google Scholar 

  124. J. Belnap, S. L. Phillips, S. Flint, J. Money and M. Caldwell, Global change and biological soil crusts: effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions, Global Change Biol, 2008, 14, 670–686.

    Article  Google Scholar 

  125. C. S. Cockell, C. P. McKay, K. Warren-Rhodes and G. Horneck, Ultraviolet radiation-induced limitation to epilithic microbial growth in and deserts - Dosimetric experiments in the hyperarid core of the Atacama Desert, J. Photochem. Photobiol., B, 2008, 90, 79–87.

    Article  CAS  Google Scholar 

  126. J. D. Turnbull, S. J. Leslie and S. A. Robinson, Desiccation protects two Antarctic mosses from ultraviolet-B induced DNA damage, Fund. Plant Biol., 2009, 36, 214–221.

    Article  CAS  Google Scholar 

  127. S. Koti, K. R. Reddy, V. R. Reddy, V. G. Kakani and D. Zhao, Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L) flower and pollen morphology, pollen production, germination, and tube lengths, J. Exp. Bot., 2005, 56, 725–736.

    Article  CAS  PubMed  Google Scholar 

  128. S. Koti, K. R. Reddy, V. G. Kakani, D. Zhao and W. Gao, Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L) growth and development, Environ. Exp. Bot., 2007, 60, 1–10.

    Article  CAS  Google Scholar 

  129. K. R. Reddy, V. G. Kakani, D. Zhao, S. Koti and W. Gao, Interactive effects of ultraviolet-B radiation and temperature on cotton physiology, growth, development and hyperspectral reflectance, Photochem. Photobiol., 2004, 79, 416–427.

    Article  CAS  PubMed  Google Scholar 

  130. D. Zhao, K. R. Reddy, V. G. Kakani, S. Koti and W. Gao, Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation, Physiol. Plant., 2005, 124, 189–199.

    Article  CAS  Google Scholar 

  131. D. Zhao, K. R. Reddy, V. G. Kakani, A. R. Mohammed, J. J. Read and W. Gao, Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation, J. Plant Physiol, 2004, 161, 581–590.

    Article  CAS  PubMed  Google Scholar 

  132. D. Zhao, K. R. Reddy, V. G. Kakani, J. J. Read and J. H. Sullivan, Growth and physiological responses of cotton (Gossypium hirsutum L) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions, Plant, Cell Environ., 2003, 26, 771–782.

    Article  Google Scholar 

  133. T. A. Day, C. T. Ruhland and F. S. Xiong, Warming increases above-ground plant biomass and C stocks in vascular-plant-dominated Antarctic tundra, Global Change Biol., 2008, 14, 1827–1843.

    Article  Google Scholar 

  134. J. G. Zaller, M. M. Caldwell, S. D. Flint, C. L. Ballaré, A. L. Scopel and O. E. Sala, Solar UVB and warming affect decomposition and earthworms in a fen ecosystem in Tierra del Fuego, Argentina, Global Change Biol, 2009, 15, 2493–2502.

    Article  Google Scholar 

  135. T. A. Day, C. T. Ruhland, C. W. Grobe and F. Xiong, Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field, Oecologia, 1999, 119, 24–35.

    Article  CAS  PubMed  Google Scholar 

  136. D. Lud, A. H. L. Huiskes, T. C. W. Moerdijk and J. Rozema, The effects of altered levels of UV-B radiation on an Antarctic grass and lichen, Plant Ecol, 2001, 154, 87–99.

    Article  Google Scholar 

  137. M. Sonesson, B. A. Carlsson, T. V. Callaghan, S. Hailing, L. O. Bjorn, M. Bertgren and U. Johanson, Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change, Oikos, 2002, 99, 151–160.

    Article  Google Scholar 

  138. J. W. Bjerke, M. Zielke and B. Solheim, Long-term impacts of simulated climatic change on secondary metabolism, thallus structure and nitrogen fixation activity in two cyanolichens from the Arctic, New Phytol, 2003, 159, 361–367.

    Article  Google Scholar 

  139. R. Ulm and F. Nagy, Signalling and gene regulation in response to ultraviolet light, Curr. Opin. Plant Biol, 2005, 8, 477–482.

    Article  CAS  PubMed  Google Scholar 

  140. B. A. Brown, C. Cloix, G. H. Jiang, E. Kaiserli, P. Herzyk, D. J. Kliebenstein and G. I. Jenkins, A UV-B-specific signaling component orchestrates plant UV protection, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 18225–18230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. A. Oravecz, A. Baumann, Z. Mate, A. Brzezinska, J. Molinier, E. J. Oakeley, E. Adam, E. Schafer, F. Nagy and R. Ulm, CONSTI-TUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis, Plant Cell, 2006, 18, 1975–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. R. Ulm, A. Baumann, A. Oravecz, Z. Mate, E. Adam, E. J. Oakeley, E. Schaefer and F. Nagy, Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 1397–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. B. A. Brown and G. I. Jenkins, UV-B signaling pathway s with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH, Plant Physiol, 2007, 146, 576–588.

    Article  PubMed  CAS  Google Scholar 

  144. E. Kaiserli and G. I. Jenkins, UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B-specific signaling component UVR8 and activates its function in the nucleus, Plant Cell, 2007, 19, 2662–2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. C. Cloix and G. I. Jenkins, Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin, Mol. Plant, 2008, 1, 118–128.

    Article  CAS  PubMed  Google Scholar 

  146. J. J. Favory, A. Stec, H. Gruber, L. Rizzini, A. Oravecz, M. Funk, A. Albert, C. Cloix, G. I. Jenkins, E. J. Oakeley, H. K. Seidlitz, F. Nagy and R. Ulm, Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis, EMBO J., 2009, 28, 591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. B. A. Brown, L. R. Headland and G. I. Jenkins, UV-B action spectrum for UVR8-mediated HY5 transcript accumulation in Arabidopsis, Photochem. Photobiol., 2009, 85, 1147–1155.

    Article  CAS  PubMed  Google Scholar 

  148. M. C. Rousseaux, C. L. Ballaré, C. V. Giordano, A. L. Scopel, A. M. Zima, M. Szwarcberg-Bracchitta, P. S. Searles, M. M. Caldwell and S. B. Diaz, Ozone depletion and UVB radiation: Impact on plant DNA damage in southern South America, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 15310–15315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. C. V. Giordano, A. Galatro, S. Puntarulo and C. L. Ballaré, The inhibitory effects of UV-B radiation (280-315 nm) on Gunnera magellanica growth correlate with increased DNA damage but not with oxidative damage to lipids, Plant, Cell Environ., 2004, 27, 1415–1423.

    Article  CAS  Google Scholar 

  150. J. J. Wargent, V. C. Gegas, G. I. Jenkins, J. H. Doonan and N. D. Paul, UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation, New Phytol, 2009, 183, 315–326.

    Article  CAS  PubMed  Google Scholar 

  151. C. A. Mazza, D. Battista, A. M. Zima, M. Szwarcberg-Bracchitta, C. V. Giordano, A. Acevedo, A. L. Scopel and C. L. Ballaré, The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses, Plant, Cell Environ., 1999, 22, 61–70.

    Article  CAS  Google Scholar 

  152. G. Kaiser, O. Kleiner, C. Beisswenger and A. Batschauer, Increased DNA repair in Arabidopsis plants overexpressing CPD photolyase, Planta, 2009, 230, 505–515.

    Article  CAS  PubMed  Google Scholar 

  153. M. A. K. Jansen, K. Hectors, N. M. O’Brien, Y. Guisez and G. Potters, Plant stress and human health: Do human consumers benefit from UV-B acclimated crops?, Plant Sci., 2008, 175, 449–458.

    Article  CAS  Google Scholar 

  154. R. J. Ryel, S. D. Flint and P. W. Barnes, Solar UV-B Radiation and Global Dimming: Effects on Plant Growth and UV-shielding, in UV Radiation in Global Climate Change: Measurements, Modeling and Effects on Ecosystems, ed. W. Gao, D. L. Schmoldt and J. R. Slusser, Springer and Capital Press, 2010, pp. 370–394.

    Chapter  Google Scholar 

  155. M. M. Caldwell, L. B. Camp, C. W. Warner and S. D. Flint, Action spectra and their key role in assessing biological consequences of solar UV-B radiation change, in Stratospheric ozone reduction, solar ultraviolet radiation and plant life, ed. R. C. Worrest and M. M. Caldwell, Springer, Berlin, 1986, pp. 87–111.

    Chapter  Google Scholar 

  156. M. M. Caldwell and S. D. Flint, Uses of biological spectral weighting functions and the need of scaling for the ozone reduction problem, Plant Ecol, 1997, 128, 67–76.

    Article  Google Scholar 

  157. N. D. Paul, R. J. Jacobson, A. Taylor, J. J. Wargent and J. P. Moore, The use of wavelength-selective plastic cladding materials in horticulture: Understanding of crop and fungal responses through the assessment of biological spectral weighting functions, Photochem. Photobiol, 2005, 81, 1052–1060.

    Article  CAS  PubMed  Google Scholar 

  158. M. M. Caldwell and S. D. Flint, Use and Evaluation of Biological Spectral UV Weighting Functions for the Ozone Reduction Issue, in Environmental UV radiation: Impact on ecosystems and human health and predictive models, ed. F. Ghetti, G. Checcucci and J. F. Bornman, Springer-Verlag, Dordrecht, The Netherlands, 2006, pp. 71–84.

    Chapter  Google Scholar 

  159. T. Kotilainen, T. Venalainen, R. Tegelberg, A. Lindfors, R. Julkunen-Tiitto, S. Sutinen, R. B. O’Hara and P. J. Aphalo, Assessment of UV biological spectral weighting functions for phenolic metabolites and growth responses in silver birch seedlings, Photochem. Photobiol, 2009, 85, 1346–1355.

    Article  CAS  PubMed  Google Scholar 

  160. S. D. Flint, R. J. Ryel, T. J. Hudelson and M. M. Caldwell, Serious complications in experiments in which UV doses are effected by using different lamp heights, J. Photochem. Photobiol, B, 2009, 97, 48–53.

    Article  CAS  Google Scholar 

  161. S. D. Flint, R. J. Ryel and M. M. Caldwell, Ecosystem UV-B experiments in terrestrial communities: a review of recent findings and methodologies, Agric. Forest Meteorol, 2003, 120, 177–189.

    Article  Google Scholar 

  162. M. M. Caldwell, Solar UV Irradiation and the Growth and Development of Higher Plants, in Photophysiology, Current Topics in Photobiology and Photochemistry, Vol. VI, ed. A. C. Giese, Academic Press, New York, NY, USA, London, England, 1971, pp. 131–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Ballaré.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballaré, C.L., Caldwell, M.M., Flint, S.D. et al. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10, 226–241 (2011). https://doi.org/10.1039/c0pp90035d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp90035d

Navigation