Issue 15, 2010

Extra-framework aluminium species in hydrated faujasitezeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations

Abstract

Extra-framework aluminium (EFAL) species in hydrated dealuminated HY zeolite were thoroughly investigated by various two-dimensional solid-state NMR techniques as well as density functional theoretical calculations. 27Al MQ MAS NMR experiments demonstrated that five-coordinated and four-coordinated extra-framework aluminium subsequently disappeared with the increase of water loading, and the quadrupole interaction of each aluminium species decreased gradually during the hydration process. 1H double quantum MAS NMR revealed that the EFAL species in the hydrated zeolite consisted of three components: a hydroxyl AlOH group, and two types of water molecule (rigid and mobile water). 1H–27Al LG-CP HETCOR experiments indicated that both the extra-framework and the framework Al atoms were in close proximity to the rigid water in the fully rehydrated zeolite. The experimental results were further confirmed by DFT theoretical calculations. Moreover, theoretical calculation results further demonstrated that the EFAL species in the hydrated zeolite consisted of the three components and the calculated 1H NMR chemical shift for each component agreed well with our NMR observations. It is the rigid water that connects the extra-framework aluminium with the four-coordinated framework aluminium through strong hydrogen bonds.

Graphical abstract: Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations

Supplementary files

Article information

Article type
Paper
Submitted
28 Jul 2009
Accepted
28 Jan 2010
First published
24 Feb 2010

Phys. Chem. Chem. Phys., 2010,12, 3895-3903

Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations

S. Li, A. Zheng, Y. Su, H. Fang, W. Shen, Z. Yu, L. Chen and F. Deng, Phys. Chem. Chem. Phys., 2010, 12, 3895 DOI: 10.1039/B915401A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements