Skip to main content
Log in

Self-assembly of semiconductor quantum-dots on electrodes for photoelectrochemical biosensing

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

CdS nanoparticles linked through a duplex DNA to a Au electrode do not lead to a noticeable photocurrent upon their illumination in the presence of triethanolamine, TEOA, 20 mM, pH = 7.2. The intercalation of doxorubicin into the duplex DNA stimulates, however, the generation of a photocurrent. This is attributed to the trapping of photoexcited conduction-band electrons by the intercalator units that facilitates, by a hopping mechanism, the electron transport to the electrode. The oxidation of TEOA by valence band holes allows the formation of a steady state photocurrent. This basic phenomenon is used to probe the operation of a DNA-based machine through the assembly of CdS nanoparticles on a Au electrode. The machine includes a nucleic acid “track”, (1), that binds a primer, (2), through hybridization to a predefined domain. In the presence of polymerase, the nucleotide mixture, dNTPs, and the nicking enzyme, the autonomous replication, nicking and displacement of the “waste product”, (3), are activated. The “waste product” bridges the (4)-functionalized CdS nanoparticles and the nucleic acid (5)-functionalized Au electrode, resulting in the assembly of the nanoparticles on the electrode. The intercalation of doxorubicin into the DNA-CdS nanostructures results in the generation of photocurrents upon illumination in the presence of TEOA, pH = 7.2. The photocurrents are controlled by the time intervals used to operate the DNA machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271, 933–937

    Article  CAS  Google Scholar 

  2. H. Weller, Colloidal semiconductor Q-particles: Chemistry in the transition region between solid state and molecules, Angew. Chem., Int. Ed. Engl., 1993, 32, 41–53.

    Article  Google Scholar 

  3. A. Henglein, Small particle research—Physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 1989, 89, 1861–1873

    Article  CAS  Google Scholar 

  4. P. V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces, Chem. Rev., 1993, 93, 267–300

    Article  CAS  Google Scholar 

  5. A. Hagfeldt and M. Gratzel, Light induced redox reactions in nanocrystalline systems, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  6. B. O. Dabbousi, J. Rodriguez Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem. B, 1997, 101, 9463–9475.

    Article  CAS  Google Scholar 

  7. W. C. W. Chan and S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science, 1998, 281, 2016–2018.

    Article  CAS  Google Scholar 

  8. V. Maurel, M. Laferrière, P. Billone, R. Godin and J. C. Scaiano, Free radical sensor based on CdSe quantum dots with added-amino-2,2,6,6-tetra-methyl-piperidine-oxide functionality, J. Phys. Chem. B, 2006, 110, 16353–16358

    Article  CAS  Google Scholar 

  9. Y. Lai, Y. Yu, P. Zhong, J. Z. Wu, Z. Y. Long and C. S. Liang, Development of novel quantum dots as fluorescent sensors for application in highly sensitive spectrofluorimetric determination of Cu2+, Anal. Lett., 2006, 39, 1201–1209.

    Article  CAS  Google Scholar 

  10. I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater., 2005, 4, 435–446

    Article  CAS  Google Scholar 

  11. E. Katz and I. Willner, Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications, Angew. Chem., Int. Ed., 2004, 43, 6042–6108.

    Article  CAS  Google Scholar 

  12. Z. Y. Tang, Y. Wang and N. A. Kotov, Semiconductor nanoparticles on solid substrates: Film structure, intermolecular interactions, and polyelectrolyte effects, Langmuir, 2002, 18, 7035–7040.

    Article  CAS  Google Scholar 

  13. J. P. Xu, Y. Weizmann, N. Krikhely, R. Baron and I. Willner, Layered H-bonded nucleotide-functionalized CdS nanoparticles for photoelectrochemical applications, Small, 2006, 2, 1178–1182.

    Article  CAS  Google Scholar 

  14. R. Baron, C. H. Huang, D. M. Bassani, A. Onopriyenko, M. Zayats and I. Willner, Hydrogen-bonded CdS nanoparticle assemblies on electrodes for photoelectrochemical applications, Angew. Chem., Int. Ed., 2005, 44, 4010–4015.

    Article  CAS  Google Scholar 

  15. L. Sheeney-Haj-Ichia, J. Wasserman and I. Willner, CdS-nanoparticle architectures on electrodes for enhanced photocurrent generation, Adv. Mater., 2002, 14, 1323.

    Article  CAS  Google Scholar 

  16. E. Granot, F. Patolsky and I. Willner, Electrochemical assembly of a CdS semiconductor nanoparticle monolayer on surfaces: Structural properties and photoelectrochemical applications, J. Phys. Chem. B, 2004, 108, 5875–5881.

    Article  CAS  Google Scholar 

  17. E. R. Goldman, I. L. Medintz, J. L. Whitley, A. Hayhurst, A. R. Clapp, H. T. Uyeda, J. R. Deschamps, M. E. Lassman and H. Mattoussi, A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor, J. Am. Chem. Soc., 2005, 127, 6744–6751.

    Article  CAS  Google Scholar 

  18. F. Patolsky, R. Gill, Y. Weizmann, T. Mokari, U. Banin and I. Willner, Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots, J. Am. Chem. Soc., 2003, 125, 13918–13919.

    Article  CAS  Google Scholar 

  19. I. Willner, F. Patolsky and J. Wasserman, Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays, Angew. Chem., Int. Ed., 2001, 40, 1861–1864.

    Article  CAS  Google Scholar 

  20. E. Katz, M. Zayats, I. Willner and F. Lisdat, Controlling the direction of photocurrents by means of CdS nanoparticles and cytochrome c-mediated biocatalytic cascades, Chem. Commun., 2006, 13, 1395–1397.

    Article  Google Scholar 

  21. R. Gill, F. Patolsky, E. Katz and I. Willner, Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems, Angew. Chem., Int. Ed., 2005, 44, 4554–4557.

    Article  CAS  Google Scholar 

  22. For a recent review on DNA-based machines see M. Beissenhirtz, I. Willner, Org. Biomol. Chem., 2006, 4, 3392–3401.

    Article  CAS  Google Scholar 

  23. A. B. Steel, T. M. Herne and M. J. Tarlov, Electrochemical quantitation of DNA immobilized on gold, Anal. Chem., 1998, 70, 4670–4677.

    Article  CAS  Google Scholar 

  24. D. Porath, G. Cuniberti, R. D. Felice, Charge transport in DNA-based devices, Top. Curr. Chem., 2004, 237, 183–227.

    Article  CAS  Google Scholar 

  25. M. I. Bodnarchuk, M. V. Kovalenko, A. L. Stroyuk and S. Y. Kuchmii, Photoinduced electron transfer between CdS and CdTe nanoparticles in colloidal solutions, Theor. Exp. Chem., 2004, 40, 287–29.

    Article  CAS  Google Scholar 

  26. Y. Weizmann, M. K. Beissenhirtz, Z. Cheglakov, R. Nowarski, M. Kotler and I. Willner, A virus spotlighted by an autonomous DNA machine, Angew. Chem., Int. Ed., 2006, 45, 7384–7388.

    Article  CAS  Google Scholar 

  27. W. Tan, K. Wang and T. J. Drake, Molecular beacons, Curr. Opin. Chem. Biol., 2004, 8, 547–553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner.

Additional information

This paper was published as part of the special issue to commemorate the 70th birthday of Vincenzo Balzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, R., Gill, R., Beissenhirtz, M. et al. Self-assembly of semiconductor quantum-dots on electrodes for photoelectrochemical biosensing. Photochem Photobiol Sci 6, 416–422 (2007). https://doi.org/10.1039/b612435f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b612435f

Navigation