Issue 7, 2005

Cavity ringdown measurements of mercury and its hyperfine structures at 254 nm in an atmospheric microwave plasma: spectral interference and analytical performance

Abstract

The plasma-cavity ringdown spectroscopic (Plasma-CRDS) technique has been demonstrated as a powerful tool for elemental and isotopic measurements in recent studies. This work reports the first application of plasma-CRDS to measurements of elemental mercury and its stable isotopes at the 254 nm transition under atmospheric conditions. A microwave-induced plasma (MIP) operating at 80–100 W is used to generate Hg atoms from standard HgCl2 solutions diluted by 2% nitric acid solvent. It is found that a background absorption, attributed to the overlap of two broadened rovibrational transitions R21(21) and P1(15) of the OH A-X (3-0) band located at 253.65 nm, generates significant spectral interference with the absorption peak of Hg at 254 nm. With an optimized operating condition, including plasma powers, gas flow rates, and laser beam positions in the plasma, the detection sensitivity of Hg is determined to be 9.1 ng ml−1 in aqueous solution, equivalently 221 pptv in the gas phase; this detection limit is approximately 2-fold higher than the theoretical detection limit, 126 pptv, which was estimated by using the parameters of the instrument system and the calculated absorption cross-section, 2.64 × 10−14 cm2 atom−1, of the transition under atmospheric plasma conditions. High-resolution spectral scans show a clear contour of the stable isotopes of the 254 nm transition. The technical challenges encountered and the potential for further development of the Hg analyzer using the MIP-CRDS technique are discussed.

Graphical abstract: Cavity ringdown measurements of mercury and its hyperfine structures at 254 nm in an atmospheric microwave plasma: spectral interference and analytical performance

Article information

Article type
Paper
Submitted
29 Mar 2005
Accepted
27 May 2005
First published
10 Jun 2005

J. Anal. At. Spectrom., 2005,20, 638-644

Cavity ringdown measurements of mercury and its hyperfine structures at 254 nm in an atmospheric microwave plasma: spectral interference and analytical performance

C. Wang, S. T. Scherrer, Y. Duan and C. B. Winstead, J. Anal. At. Spectrom., 2005, 20, 638 DOI: 10.1039/B504318B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements