Issue 11, 2005

Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents

Abstract

The extraction of both UO22+ and trivalent lanthanide and actinide ions (Am3+, Nd3+, Eu3+) by dialkylphosphoric or dialkylphosphinic acids from aqueous solutions into the ionic liquid, 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been studied and compared to extractions into dodecane. Radiotracer partitioning measurements show comparable patterns of distribution ratios for both the ionic liquid/aqueous and dodecane/aqueous systems, and the limiting slopes at low acidity indicate the partitioning of neutral complexes in both solvent systems. The metal ion coordination environment, elucidated from EXAFS and UV-visible spectroscopy measurements, is equivalent in the ionic liquid and dodecane solutions with coordination of the uranyl cation by two hydrogen-bonded extractant dimers, and of the trivalent cations by three extractant dimers. This is the first definitive report of a system where both the biphasic extraction equilibria and metal coordination environment are the same in an ionic liquid and a molecular organic solvent.

Graphical abstract: Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents

Supplementary files

Article information

Article type
Paper
Submitted
08 Feb 2005
Accepted
15 Apr 2005
First published
03 May 2005

Dalton Trans., 2005, 1966-1971

Identical extraction behavior and coordination of trivalent or hexavalent f-element cations using ionic liquid and molecular solvents

V. A. Cocalia, M. P. Jensen, J. D. Holbrey, S. K. Spear, D. C. Stepinski and R. D. Rogers, Dalton Trans., 2005, 1966 DOI: 10.1039/B502016F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements