Issue 3, 2005

Novel dithioether–silver(i) coordination architectures: structural diversities by varying the spacers and terminal groups of ligands

Abstract

An investigation into the dependence of the framework formation of coordination architectures on ligand spacers and terminal groups was reported based on the self-assembly of AgClO4 and eight structurally related flexible dithioether ligands, RS(CH2)nSR (Lan, R = ethyl group; Lbn, R = benzyl group, n = 1–4). Eight novel metal–organic architectures, [Ag(La1)3/2ClO4]n (1a), [Ag2(La2)2(ClO4)2]2 (2a), [AgLa3ClO4]n (3a), {[Ag(La4)2]ClO4}n (4a), [AgLb1ClO4]2 (1b), [Ag(Lb2)2]ClO4 (2b), {[Ag(Lb3)3/2(ClO4)1/2](ClO4)1/2}n (3b) and [Ag(Lb4)3/2ClO4]n (4b), were synthesized and structurally characterized by X-ray crystallography. Structure diversities were observed for these complexes: 1a forms a 2-D (6,3) net, while 2a is a discrete tetranuclear complex, in which the AgI ion adopts linear and tetrahedral coordination modes, and the S donors in each ligand show monodentate terminal and μ2-S bridging coordination fashions; 3a has a chiral helical chain structure in which two homo-chiral right-handed single helical chains (Ag–La3–)n are bound together through μ2-S donors, and simultaneously gives rise to left-handed helical entity (Ag–S–)n. In 4a, left- and right-handed helical chains formed by the ligands bridging AgI centers are further linked alternately by single-bridging ligands to form a non-chiral 2-D framework. 1b has a dinuclear structure showing obvious ligand-sustained Ag–Ag interaction, while 2b is a mononuclear complex; 3b is a 3-D framework formed by ClO4 linking the 2-D (6,3) framework, which is similar to that of 1a, and 4b has a single, double-bridging chain structure in which 14-membered dinuclear ring units formed through two ligands bridging two AgI ions are further linked by single-bridging ligands. In addition, a systematic structural comparison of these complexes and other reported AgClO4 complexes of analogous dithioether ligands indicates that the ligand spacers and terminal groups take essential roles on the framework formation of the AgI complexes, and this present feasible ways for adjusting the structures of such complexes by modifying the ligand spacers and terminal groups.

Graphical abstract: Novel dithioether–silver(i) coordination architectures: structural diversities by varying the spacers and terminal groups of ligands

Supplementary files

Article information

Article type
Paper
Submitted
28 Oct 2004
Accepted
25 Nov 2004
First published
10 Jan 2005

Dalton Trans., 2005, 464-474

Novel dithioether–silver(I) coordination architectures: structural diversities by varying the spacers and terminal groups of ligands

J. Li, X. Bu, J. Jiao, W. Du, X. Xu and R. Zhang, Dalton Trans., 2005, 464 DOI: 10.1039/B416576B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements