Skip to main content
Log in

Origin of the N-methyl and N-phenyl substituent effects on the fluorescence vibronic structures of trans-4-aminostilbene and its derivatives in hexane

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The origin of the N-substituent effect on the room temperature fluorescence vibronic structures of trans-4-aminostilbene (1), its disubstituted derivatives (2 and 3), and the fused-ring analogs (4) in hexane has been investigated. The fluorescence spectra of aminostilbenes 14 in hexane are structured and the intensity ratio of the 0,1 vs. the 0,0 band decreases upon N-methyl or N-phenyl substitution, indicating that the N-substituents reduce the displacement in the equilibrium configuration (ΔQe) between the ground and the excited states. Our data are consistent with a planar fluorescing state for 14 in hexane. The N-substituents affect the planarity of the ground state structures as well as the conjugation length allowed for exciton resonance, both of which are in accord with the observed progression in fluorescence vibronic structures. According to our analysis, the conformation effect that is associated with the geometry of the amino group appears to play a major role. The corresponding studies on the solvent effect suggest that the fluorescing state of 14 in more polar solvents is also a planar charge-transfer state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bässler and B. Schweitzer, Site-selective fluorescence spectroscopy of conjugated polymers and oligomers, Acc. Chem. Res., 1999, 32, 173–182.

    Article  Google Scholar 

  2. D. H. Waldeck, Photoisomerization dynamics of stilbenes, Chem. Rev., 1991, 91, 415–436 and references cited therein.

    Article  CAS  Google Scholar 

  3. E. M. Kober, J. V. Caspar, R. S. Lumpkin and T. J. Meyer, Application of the energy gap law to excited-state decay of osmium(II)-polypyridine complexes: Calculation of relative nonradiative decay rates from emission spectral profiles, J. Phys. Chem., 1986, 90, 3722–3734.

    Article  CAS  Google Scholar 

  4. G. F. Strouse, J. R. Schoonover, R. Duesing, S. Boyde, W. E. Jones Jr. and T. J. Meyer, Influence of electronic delocalization in metal-to-ligand charge transfer excited states, Inorg. Chem., 1995, 34, 473–487.

    Article  CAS  Google Scholar 

  5. Y. Liu, S. Jiang, K. Glusac, D. H. Powell, D. F. Anderson and K. S. Schanze, Photophysics of monodisperse platinum-acetylide oligomers: delocalization in the singlet and triplet excited states, J. Am. Chem. Soc., 2002, 124, 12412–12413.

    Article  CAS  Google Scholar 

  6. W. Rettig and M. Maus, Conformational changes accompanying intramolecular excited state electron transfer, in Conformational Analysis of Molecules in Excited States; ed. J. Waluk, Wiley-VCH, New York, 2000, ch. 1, pp. 1–55.

    Google Scholar 

  7. B. Menucci, A. Toniolo and J. Tomasi, Ab initio study of the electronic excited states in 4-(N,N-dimethylamino)benzonitrile with inclusion of solvent effects: the internal charge transfer process, J. Am. Chem. Soc., 2000, 122, 10621–10630.

    Article  Google Scholar 

  8. W. Rettig and B. Zietz, Do twisting and pyramidalization contribute to the reaction coordinate of charge-transfer formation in DMABN and derivatives?, Chem. Phys. Lett., 2000, 317, 187–196.

    Article  CAS  Google Scholar 

  9. W. M. Kwok, C. Ma, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie and S. Umapathy, A determination of the structure of the intramolecular charge transfer state of 4-dimethylaminobenzonitrile (DMABN) by time-resolved resonance Raman spectroscopy, J. Phys. Chem. A, 2001, 105, 984–990.

    Article  CAS  Google Scholar 

  10. H. Okamoto, H. Inishi, Y. Nakamura, S. Kohtani and R. Nakagaki, Picosecond infrared spectra of isotope-substituted 4-(dimethylamino)benzonitriles and molecular structure of the charge-transfer singlet excited state, J. Phys. Chem. A, 2001, 105, 4182–4188.

    Article  CAS  Google Scholar 

  11. J. Dobkowski, J. Wojcik, W. Kozminski, R. Kolos, J. Waluk and J. Michl, An experimental test of C–N bond twisting in the TICT state: syn-anti photoisomerization in 2-(N-methyl-N-isopropylamino)-5-cyanopyridine, J. Am. Chem. Soc., 2002, 124, 2406–2407.

    Article  CAS  Google Scholar 

  12. S. Kato and Y. Amatatsu, A theoretical study on the mechanism of charge transfer state formation of 4-(N,N-dimethylamino)benzonitrilte in an aqueous solution, J. Chem. Phys., 1990, 92, 7241–7257.

    Article  CAS  Google Scholar 

  13. A. B. J. Parusel, G. Köhler and S. Grimme, Density functional study of excited charge transfer state formation in 4-(N,N-dimethylamino)benzonitrile, J. Phys. Chem. A, 1998, 102, 6297–6306.

    Article  CAS  Google Scholar 

  14. J.-F. Létard, R. Lapouyade and W. Rettig, Structure-photophysics correlations in a series of 4-(dialkylamino)stilbenes: intramolecular charge transfer in the excited state as related to the twist around the single bonds, J. Am. Chem. Soc., 1993, 115, 2441–2447.

    Article  Google Scholar 

  15. F. D. Lewis, R. S. Kalgutkar and J.-S. Yang, The photochemistry of trans-ortho-, -meta-, and -para-aminostilbenes, J. Am. Chem. Soc., 1999, 121, 12045–12053.

    Article  CAS  Google Scholar 

  16. J.-S. Yang, S.-Y. Chiou and K.-L. Liau, Fluorescence enhancement of trans-4-aminostilbene by N-phenyl substitutions: the “amino conjugation effect”, J. Am. Chem. Soc., 2002, 124, 2518–2527.

    Article  CAS  Google Scholar 

  17. S. Malkin and E. Fisher, Temperature dependence of photoisomerization. III. Direct and sensitized photoisomerization of stilbenes, J. Phys. Chem., 1964, 68, 1153–1163.

    Article  CAS  Google Scholar 

  18. N. Verdal, J. T. Godbout, T. L. Perkins, G. P. Bartholomew, G. C. Bazan and A. M. Kelley, Raman and site-selective fluorescence spectra of model compounds for interchain interactions in poly(phenylenevinylene), Chem. Phys. Lett., 2000, 320, 95–103.

    Article  CAS  Google Scholar 

  19. L. Liao and Y. Pang, A study on the vibrational structure of poly(phenylenevinylene)s via low-temperature UV-vis and fluorescence spectroscopy, J. Mater. Chem., 2001, 11, 3078–3081.

    Article  CAS  Google Scholar 

  20. W. R. Dawson and M. W. Windsor, Fluorescence yields of aromatic compounds, J. Phys. Chem., 1968, 72, 3251–3260.

    Article  CAS  Google Scholar 

  21. G. D. Diana, P. M. Carabateas, R. E. Johnson, G. L. Williams, F. Pancic and J. C. Collins, Antiviral activity of some β-diketones. 4. Benzyl diketones. In vitro activity against both RNA and DNA viruses, J. Med. Chem., 1978, 21, 889–894.

    Article  CAS  Google Scholar 

  22. S. Bance, H. J. Barber and A. M. Woolman, Bromination of diphenylalkanes and the preparation of some stilbene derivatives. Part I. α,β-Diphenylethane, J. Chem. Soc., 1943, 1–4.

    Google Scholar 

  23. T. Wolff, F. Schmidt and P. Volz, Regioselectivity and stereoselectivity in the photodimerization of rigid and semirigid stilbenes, J. Org. Chem., 1992, 57, 4255–4262.

    Article  CAS  Google Scholar 

  24. I. E. Nifant’ev, A. A. Sitnikov, N. V. Andriukhova, I. P. Laishevtsev and Y. N. Luzikov, A facile synthesis of 2-arylindenes by Pd-catalyzed direct arylation of indene with aryl iodides, Tetrahedron Lett., 2002, 43, 3213–3215.

    Article  Google Scholar 

  25. L. G. Greifenstein, J. B. Lambert, R. J. Nienhuis, H. E. Fried and G. A. Pagani, Response of acidity and magnetic resonance properties to aryl substitution in carbon acids and derived carbanions: 2- and 3-arylindenes, J. Org. Chem., 1981, 46, 5125–5132.

    Article  CAS  Google Scholar 

  26. W. S. Wadsworth Jr., Synthetic applications of phosphoryl-stabilized anions, Org. React., 1977, 25, 73–253.

    CAS  Google Scholar 

  27. J. P. Wolfe, S. Wagaw, J.-F. Marcoux and S. L. Buchwald, Rational development of practical catalysts for aromatic carbon-nitrogen bond formation, Acc. Chem. Res., 1998, 31, 805–818.

    Article  CAS  Google Scholar 

  28. R. F. Borch and A. I. Hassid, A new method for the methylation of amines, J. Org. Chem., 1972, 37, 1673–1674.

    Article  CAS  Google Scholar 

  29. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc., 1985, 107, 3902–3909.

    Article  CAS  Google Scholar 

  30. M. C. Zerner, G. H. Loew, R. F. Kirchner and U. T. Mueller-Westerhoff, An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene, J. Am. Chem. Soc., 1980, 102, 589–599.

    Article  CAS  Google Scholar 

  31. Y. Marcus, The properties of organic liquids that are relevant to their use as solvating solvents, Chem. Soc. Rev., 1993, 409–416.

    Google Scholar 

  32. A. Samanta, S. Saha and R. W. Fessenden, Nature of the fluorescent state of N-arylcarbazole derivatives as derived from directly measured values of the excited state dipole moment, J. Phys. Chem. A, 2001, 105, 5438–5441.

    Article  CAS  Google Scholar 

  33. W. Schuddeboom, S. A. Jonker, J. M. Warman, U. Leinhos, W. Kühnle and K. A. Zachariasse, Excited state dipole moments of dual fluorescent 4-(dialkylamino)benzonitriles. Influence of alkyl chain length and effective solvent polarity, J. Phys. Chem., 1992, 96, 10809–10819.

    Article  CAS  Google Scholar 

  34. L. Serrano-Andrés, M. Merchán, B. O. Roos and R. Lindh, Theoretical study of the internal charge transfer in aminobenzonitiriles, J. Am. Chem. Soc., 1995, 117, 3189–3204 and references cited therein.

    Article  Google Scholar 

  35. T. C. Werner, T. Matthews and B. Soller, An investigation of the fluorescence properties of carboxyl substituted anthracenes, J. Phys. Chem., 1976, 80, 533–541.

    Article  CAS  Google Scholar 

  36. J.-S. Yang and T. M. Swager, Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects, J. Am. Chem. Soc., 1998, 120, 11864–11873.

    Article  CAS  Google Scholar 

  37. K. Sakanoue, M. Motoda, M. Sugimoto and S. Sakaki, A molecular orbital study on the hole transport property of organic amine compounds, J. Phys. Chem. A, 1999, 103, 5551–5556.

    Article  CAS  Google Scholar 

  38. P. N. Gates, D. Steele, R. A. R. Pearce and K. Radcliffe, The vibrational spectra of compounds containing the dimethylamino group. Part II. p-N,N-Dimethylaminobenzonitrile and the N-methyltoluidines, J. Chem. Soc., Perkin Trans. 2, 1972, 1607–1613.

    Google Scholar 

  39. K. Ogawa, T. Sano, S. Yoshimura, Y. Takeuchi and K. Toriumi, Molecular structure and intramolecular motion of (E)-stilbenes in crystals. An interpretation of the unusually short ethylene bond, J. Am. Chem. Soc., 1992, 114, 1041–1051.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Professor Fred Lewis on the event of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, JS., Wang, CM., Hwang, CY. et al. Origin of the N-methyl and N-phenyl substituent effects on the fluorescence vibronic structures of trans-4-aminostilbene and its derivatives in hexane. Photochem Photobiol Sci 2, 1225–1231 (2003). https://doi.org/10.1039/b306226k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b306226k

Navigation