Skip to main content
Log in

Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetrasulfonates: potential sensitizers for the two-photon photodynamic therapy of tumors

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In order to evaluate the potential of copper and nickel phthalocyanine tetrasulfonates as sensitizers for two-photon photodynamic therapy, we conducted kinetic femtosecond measurements of transient absorption and bleaching of their excited state dynamics in aqueous solution. Samples were pumped with 620 nm and 310 nm laser light, which allowed us to study relaxation processes from both the first and second singlet (or doublet for the copper phthalocyanine) excited states. A second excitation from the first excited triplet state, approximately 685 and 105 ps after the first excitation for copper and nickel phthalocyanine tetrasulfonate respectively, was the most efficient way to bring the molecules to an upper triplet state. Presumably this highest triplet state can inflict molecular damage on adjacent biomolecules in the absence of oxygen, resulting in the desired cytotoxic cellular response. Transient absorption spectra at different fixed delays indicate that optimum efficiency would require that the second photon has a wavelength of approximately 750 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, Photosensitizers: therapy and detection of malignant tumors, Photochem. Photobiol., 1987, 45, 879–889.

    Article  CAS  PubMed  Google Scholar 

  2. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  3. W. M. Sharman, C. M. Allen, J. E. van Lier, Photodynamic therapeutics: Basic principles and clinical applications, Drug Discovery Today, 1999, 4, 507–517.

    Article  CAS  PubMed  Google Scholar 

  4. H. van den Bergh, Photodynamic therapy of age-related macular degeneration: History and principles, Semin. Ophthalmol., 2001, 16, 181–200.

    Article  PubMed  Google Scholar 

  5. I. Rosenthal, C. M. Krishna, P. Riesz, E. Ben-Hur, The role of molecular oxygen in the photodynamic effect of phthalocyanines, Radiat. Res., 1986, 107, 136–142.

    Article  CAS  PubMed  Google Scholar 

  6. J. Spikes, Photodynamic action: From paramecium to photochemotherapy, Photochem. Photobiol., 1997, 65, 142–147.

    Article  Google Scholar 

  7. C. S. Foote, Definition of type I and type II photosensitized oxidation, Photochem. Photobiol., 1991, 54, 659.

    Article  CAS  PubMed  Google Scholar 

  8. K. R. Weishaupt, C. J. Gomer and T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor, Cancer Res., 1976, 36, 2326–2329.

    CAS  PubMed  Google Scholar 

  9. W. M. Sharman, C. M. Allen, J. E. van Lier, Role of activated oxygen species in photodynamic therapy, Methods Enzymol., 2000, 319, 376–400.

    Article  CAS  PubMed  Google Scholar 

  10. G. W. Smith, G. McGimpsey, M. C. Lynch, I. E. Kochevar and R. W. Redmond, An efficient oxygen independent two-photon photosensitization mechanism, Photochem. Photobiol., 1994, 59, 135–139.

    Article  CAS  PubMed  Google Scholar 

  11. H. Stiel, K. Teuchner, A. Paul, W. Freyer and D. Leupold, Two-photon excitation of alkaly-substituted magnesium phthalocyanine: radical formation via higher excited states, J. Photochem. Photobiol., A, 1994, 80, 289–298.

    Article  CAS  Google Scholar 

  12. R. L. Goyan and D. T. Cramb, Near-infrared two-photon excitation of photoporphyrin IX: photodynamics and photoproduct generation, Photochem. Photobiol., 2000, 72, 821–827.

    Article  CAS  PubMed  Google Scholar 

  13. W. G. Fisher, W. P. Partridge, Jr., C. Dees and E. A. Wachter, Simultaneous two-photon activation of type-I photodynamic therapy agents, Photochem. Photobiol., 1997, 66, 141–155.

    Article  CAS  PubMed  Google Scholar 

  14. J. D. Bhawalkar, N. D. Kumar, C.-F. Zhao and P. N. Prasad, Two-photon photodynamic therapy, J. Clin. Lasers Med. Surg., 1997, 15, 201–204.

    Article  CAS  Google Scholar 

  15. R. S. Bodaness, D. F. Heller, J. Krasinski and D. S. King, The two-photon laser induced fluorescence of the tumor localizing photosensitizer hematoporphyrin derivative, J. Biol. Chem., 1986, 261, 12098–12101.

    Article  CAS  PubMed  Google Scholar 

  16. H. Ali, J. E. van Lier, Metal complexes as photo- and radiosensitizers, Chem. Rev., 1999, 99, 2379–2450.

    Article  CAS  PubMed  Google Scholar 

  17. C. M. Allen, W. M. Sharman, J. E. van Lier, Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 2001, 5, 161–169.

    Article  CAS  Google Scholar 

  18. K. Dongho, D. Holten and M. Gouterman, Evidence from picosecond transient absorption and kinetic studies of charge-transfer states in copper(ii) porphyrins, J. Am. Chem. Soc., 1984, 106, 2793–2798.

    Article  Google Scholar 

  19. J. Rodriguez, C. Kirmaier and D. Holten, Optical properties of metalloporphyrins excited states, J. Am. Chem. Soc., 1989, 111, 6500–6506.

    Article  CAS  Google Scholar 

  20. L Howe and J. Z. Zhang, The effect of biological substrates on the ultrafast excited-state dynamics of zinc phthalocyanine tetrasulfonate in solution, Photochem. Photobiol., 1998, 67, 90–96.

    Article  CAS  PubMed  Google Scholar 

  21. A. V. Nikolaitchik, O. Korth, M. A. J. Rodgers, Crown ether substituted monomeric and cofacial dimeric metallophthalocyanines. 1. Photophysical studies of the free base, zinc(ii), and copper(ii) variants, J. Phys. Chem., 1999, 103, 7587–7596.

    Article  CAS  Google Scholar 

  22. A. V. Nikolaitchik, M. A. J. Rodgers, Crown ether substituted monomeric and cofacial dimeric metallophthalocyanines. 2. Photophysical studies of the cobalt(ii) and nickel(ii) variants, J. Phys. Chem., 1999, 103, 7597–7605.

    Article  CAS  Google Scholar 

  23. Q. Zhong, Z. Wang, Y. Liu, Q. Zhu and F. Kong, The ultrafast dynamics of phthalocyanine and porphyrin derivatives, J. Chem. Phys., 1996, 105, 5377–5379.

    Article  CAS  Google Scholar 

  24. A. P. Pelliccioli, K. Henbest, G. Kwag Terri, R. Carvagno, M. E. Kenney, M. A. J. Rodgers, Synthesis and excited state dynamics of μ-oxo group IV metal phthalocyanine dimers: a laser photoexcitation study, J. Phys. Chem., 2001, 105, 1757–1766.

    Article  CAS  Google Scholar 

  25. A. D. Kirk, C. H. Langford, C. S. Joly, R. Lesage and D. K. Sharma, Sub-nanosecond processes in the quenching of a copper phthalocyanine dye absorbed on TiO2, J. Chem. Soc., Chem. Commun., 1984, 961–962.

    Google Scholar 

  26. R. R. Millard and B. I. Greene, Direct determination of nonradiative relaxation rates in nonfluorescent metallophthalocyanines, J. Phys. Chem., 1985, 89, 2976–2978.

    Article  CAS  Google Scholar 

  27. L. Howe and J. Z. Zhang, Ultrafast studies of excited-state dynamics of phthalocyanine and zinc phthalocyanine tetrasulfonate in solution, J. Phys. Chem., 1997, 101, 3207–3213.

    Article  CAS  Google Scholar 

  28. K. Arnold, T. S. Balaban, M. N. Blom, O. T. Ehrler, S. Gilb, O. Hampe, J. E. van Lier, J. M. Weber and M. M. Kappes, Electron Autodetachment from Isolated Nickel and Copper Phthalocyanine-Tetrasulfonate Tetraanions: Isomer Specific Rates, J. Phys. Chem. A, 2003, 107, 794–803.

    Article  CAS  Google Scholar 

  29. J. E. van Lier and J. D. Spikes, in Photosensitising Compounds: Their Chemistry, Biology and Clinical Use, eds. G. Bock and S. Harnett, Wiley and Sons Ltd., Chichester, 1989, pp. 17–32.

  30. J. H. Weber and D. H. Bush, Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4,4′,4″,4‴-tetrasulfophthalocyanines, Inorg. Chem., 1965, 4, 469–471.

    Article  CAS  Google Scholar 

  31. R. L. Ake and M. Gouterman, Porphyrins XIV. Theory for the luminescent state in VO, Co, Cu complexes, Theor. Chim. Acta, 1969, 15, 20–42.

    Article  CAS  Google Scholar 

  32. S. Marengo, C. Pépin, T. Goulet and D. Houde, Time-gated transillumination of objects in highly scattering media using a subpicosecond optical amplifier, IEEE J. Sel. Top. Quantum Electron., 1999, 5, 895–901.

    Article  CAS  Google Scholar 

  33. C. Pépin, D. Houde, H. Remita, T. Goulet, J.-P. Jay-Gerin, Evidence for resonance-enhanced multiphoton ionization of liquid water using 2-eV laser light: variation of hydrated electron absorbance with femtosecond pulse intensity, Phys. Rev. Lett., 1992, 69, 3389–3392.

    Article  PubMed  Google Scholar 

  34. D. Houde., C. Pépin, T. Goulet, J.-P. Jay-Gerin, Dynamics of solvated electrons in polar liquids using 2-eV femtosecond laser pulses, Proc. SPIE-Int. Soc. Opt. Eng., 1993, 2041, 139–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, M., Pépin, C., Houde, D. et al. Ultrafast studies of the excited-state dynamics of copper and nickel phthalocyanine tetrasulfonates: potential sensitizers for the two-photon photodynamic therapy of tumors. Photochem Photobiol Sci 3, 120–126 (2004). https://doi.org/10.1039/b302787b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b302787b

Navigation