Skip to main content
Log in

Photocatalysed degradation of a herbicide derivative, bromacil, in aqueous suspensions of titanium dioxide

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photocatalysed degradation of a herbicide, 5-bromo-3-sec-butyl-6-methyl uracil (bromacil, 1) has been investigated in aqueous suspensions of titanium dioxide under a variety of conditions. The degradation was studied by monitoring the depletion in total organic carbon (TOC) content as a function of irradiation time. The degradation kinetics of the model compound was studied under different conditions such as pH, catalyst concentration, substrate concentration, different types of TiO2 and in the presence of electron acceptors such as hydrogen peroxide (H2O2) and potassium bromate (KBrO3) besides molecular oxygen. The degradation rate was found to be strongly influenced by all the above factors. Higher degradation rate was observed with Degussa P25 as compared with other photocatalysts. The addition of bromate ion has been found to enhance the degradation rate markedly. 5-Hydroxy-5-sec-butyl-6-methyl uracil (2) and diisopropyl urea (16) were identified as the degradation products by GC-MS analysis and probable pathways for the formation of the products have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Z. Cohen and C. Eiden and M. N. Lober, in Evalution of Pesticide in Ground Water, ed. W. Y. Gerner, ACS Symp. Ser. 315, American Chemical Society, Washington, DC, 1986, pp. 170–196.

  2. L. Muszkat and D. Raucher and M. Mogaritz and D. Ronen, in Groundwater Contamination and Control, ed. U. Zoller, Marcel Dekker, 1994, pp. 257–271.

  3. M. Rosner and I. T. Yasur and A. Hadas and D. Russo and B. Yaron, Leaching of Tebuthylazine and Bromacil through Field Soils, Water Air Soil Pollut., 1999, 113, 319–335.

    Article  Google Scholar 

  4. R. M. Dowd and M. R. Anderson and M. L. Johnson, Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration, Groundwater Monitoring Geophysical Methods, National Water Well Association, Dublin, OH, 1998, pp. 1365–1379.

    Google Scholar 

  5. D. M. Blake, Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air, National Renewal Energy Laboratory, Cole Boulevard Golden, CO, USA, 1999.

    Book  Google Scholar 

  6. J. M. Herrmann, Heterogeneous photocatalysis fundamentals and applications to the removal of various types of aqueous pollutants, Catal Today, 1999, 53, 115–129.

    Article  CAS  Google Scholar 

  7. M. I. Litter, Heterogeneous photocatalysis transition metal ions in photocatalytic system, Appl Catal. B: Environ., 1999, 23, 89–114.

    Article  CAS  Google Scholar 

  8. A. Vidal and Z. Dinya and F. Mogyorodi, Jr. and F. Mogyorodi, Photocatalytic degradation of thiocarbamate herbicide active ingredients in water, Appl. Catal. B: Environ., 1999, 21, 259–267.

    Article  CAS  Google Scholar 

  9. A. Assabane, Y. A. Ichou and H. Tahiri and C. Guillard and J. M. Herrmann, Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania: Identification of intermediates and reaction pathway of photo-mineralization of trimellitic acid, Appl. Catal. B: Environ., 2000, 24, 71–87.

    Article  CAS  Google Scholar 

  10. O. M. Alfano and D. Bahnemann and A. E. Cassano and R. Dillert and R. Goslich, Photocatalysis in water environments using artificial and solar light, Catal. Today, 2000, 58, 199–230.

    Article  CAS  Google Scholar 

  11. A. Fujishima and T. N. Rao and D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1, 1–21.

    Article  CAS  Google Scholar 

  12. K. Macounova and J. Urban and H. Krysova and J. Krysa and J. Jirkovský and J. Ludvik, Photodegradation of metamitron on TiO2, J. Photochem. Photobiol. A: Chem., 2001, 140, 93–98.

    Article  CAS  Google Scholar 

  13. A. Topalov and B. Abramovie and D. M. Gabor and J. Csanadi and O. Arcson, Photocatalytic oxidation of the herbicide (4-chloro-2-methyl phenoxy acetic acid MCPA) over TiO2, J. Photochem. Photobiol. A: Chem., 2001, 140, 249–253.

    Article  CAS  Google Scholar 

  14. X. Li and J. W. Cubbage and W. S. Jenks, Variation in the chemistry of the TiO2-mediated degradation of hydroxyl and methoxy benzenes: electron transfer and OH initiated chemistry, J. Photochem. Photobiol. A: Chem., 2001, 143, 69–85.

    Article  CAS  Google Scholar 

  15. D. Q. Hung and J. Wohlers and W. Thiemann, The mineralization of methamidophos using an ionised air water treatment pilot system and ultraviolet irradiation, Water Res., 2002, 36, 2959–2966.

    Article  CAS  Google Scholar 

  16. R. Meister, Farm Chemicals Handbook, Meister Publishing Company, Willoughby, OH, 1998, p. 101–116.

    Google Scholar 

  17. K. A. Hassall, The Biochemistry and Uses of Pesticides, Macmillan Press, Basingstoke, Hampshire, 1990, pp. 455–456.

    Book  Google Scholar 

  18. D. C. Wolf and J. P. Martin, Microbial degradation of bromacil-2-14C & terbacil-2-14C, Soil Sci. Soc. Am. Proc, 1974, 38, 921–925.

    Article  CAS  Google Scholar 

  19. D. C. Wolf, Degradation of bromacil, terbacil 2,4-D and atrazine in soil and pure culture and their effect on microbial activity, Diss. Abstr. Int., B, 1974, 34, 4783–4784.

    Google Scholar 

  20. A. J. Acher and C. J. Hapeman and D. R. Shelton and M. T. Muldoon, W. R. Lusby and A. Avni and R. Water, Comparison of formation & biodégradation of bromacil oxidation products in aqueous solutions, J. Agric. Food Chem., 1994, 421, 2040–2047.

    Article  Google Scholar 

  21. L. Muszkat and M. Halmann and D. Raucher and L. Bir, Solar photodegradation of xenobiotic contaminants in polluted well water, J. Photochem. Photobiol. A: Chem., 1992, 65, 409–417.

    Article  CAS  Google Scholar 

  22. L. Feigelson and L. Muszkat and L. Bir and K. A. Muszkat, Dye photoenhancement of TiO2 photocatalyzed degradation of organic pollutants: the organobromine herbicide bromacil, Water Sci. Technol, 2000, 42, 275–279.

    Article  CAS  Google Scholar 

  23. A. Torrents and B. G. Anderson and C. J. Hapeman, Kinetics of bromacil ozonolysis, J. Agric. Food Chem., 1998, 45, 1630–1636.

    Article  Google Scholar 

  24. R. I. Bickley and T. G. Carreno and J. S. Lees and L. Palmisano and R. J. D. Tilley, A spectral investigation of titanium dioxide photocatalyst, J. Solid State Chem., 1992, 92, 178–190.

    Article  Google Scholar 

  25. M. Lindner and D. W. Bahnemann and B. Hirthe and W. D. Griebler, Solar water detoxification: Novel TiO2 powders as highly active photocatalysts, J. Solar Energy Eng, 1997, 119, 120–125.

    Article  CAS  Google Scholar 

  26. S. Rauer, Untersunchung von kommerziell erhaltlichen Titan-dioxiden hinsichtlich ihrer photokatalytischen Aktivtat, Diplomarbeit, fachhochschule Hannover, Fachbereich Maschinenbau Vertiefung Umwelt-und Verfahrenstechnil, Hannover, Germany, 1998.

    Google Scholar 

  27. H. Gerischer, Solar photocatalysis with semiconductor electrodes, Top. Appl. Phys, 1979, 31, 115–172.

    Article  CAS  Google Scholar 

  28. C. Kormann and D. W. Bahnemann and M. R. Hoffman, Preparation and characterization of quantum size titanium dioxide, J. Phys. Chem., 1988, 92, 5196–5201.

    Article  CAS  Google Scholar 

  29. M. R. Hoffman and S. T. Martin, W. Y. Choi and D. W. Bahnemann, Environmental application of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69–96.

    Article  Google Scholar 

  30. D. W. Bahnemann and J. Cunningham and M. A. Fox and E. Pelizzetti and P. Pichat and N. Serpone, in Aquatic and Surface Photochemistry, ed. D. Crosby, G. Heiz and R. Zepp, Lewis Publishers, Boca Raton, EL, 1994, pp. 261–316.

  31. S. T. Martin and H. Hermann, W. Choi and M. R. Hoffmann, Time resolved microwave conductivity. Part I-TiO2 photoreactivity and size quantization, J. Chem. Soc, Faraday Trans., 1994, 90, 3315–3322.

    Article  CAS  Google Scholar 

  32. J. B. Weber and T. J. Monaco, Review of the chemical and physical properties of substituted herbicides, Proc. South Weed Sci. Soc., 1912, 25, 31–37.

    Google Scholar 

  33. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18, 1657–1755.

    Article  Google Scholar 

  34. M. Lindner, Optimierung der Photokatalytischen Wasserreinigung mit Titandioxid: Festkoerper — und Oberflaechenstruktur des Photokatalysators, PhD Thesis, Department of Chemistry, University of Hannover, Hannover, Germany, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muneer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.K., Muneer, M. & Bahnemann, D. Photocatalysed degradation of a herbicide derivative, bromacil, in aqueous suspensions of titanium dioxide. Photochem Photobiol Sci 2, 151–156 (2003). https://doi.org/10.1039/b206918k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b206918k

Navigation