Volume 108, 1997

Photodissociation, electronic relaxation and recombination of HCl in Arn(HCl) clusters Non-adiabatic molecular dynamics simulations

Abstract

The photodissociation of HCl embedded in argon clusters is studied by semiclassical molecular dynamics, based on a surface-hopping approach for the non-adiabatic transitions. The diatomics-in-molecules (DIM) method is used to construct the 12 electronic potential energy surfaces that are involved, and the non-adiabatic couplings. Caging effects, including recombination and electronic relaxation are investigated for Ar12(HCl) and Ar54(HCl), corresponding respectively to one and two complete solvation layers. The effects of the process on the cluster, e.g. fragmentation and structural deformation, are also studied. The main findings are: (1) non-adiabatic transitions play a major role in the dynamics for both clusters; (2) some recombination occurs in Ar12(HCl), and it is much greater, about 7%, in Ar54(HCl); (3) all 12 electronic states are visited, at least to some extent, in the process, but the distributions remain non-statistical throughout in both systems; (4) rates of spin-forbidden transitions are roughly of similar magnitudes to those of spin-allowed transitions between electronic states; (5) the energy gap law of radiationless relaxation theory does not work well for these systems. Symmetry and shape of the electronic states greatly affect the relaxation rates; (6) the clusters undergo melting and extensive evaporation in the processes.

Article information

Article type
Paper

Faraday Discuss., 1997,108, 243-254

Photodissociation, electronic relaxation and recombination of HCl in Arn(HCl) clusters Non-adiabatic molecular dynamics simulations

M. Y. Niv, A. I. Krylov and R. Benny Gerber, Faraday Discuss., 1997, 108, 243 DOI: 10.1039/A705649D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements