Skip to main content

Advertisement

Log in

Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Mechanisms of UVA-mutagenesis remain a matter of debate. Earlier described higher rates of mutation formation per pyrimidine dimer with UVA than with UVB and other evidence suggested that a non-pyrimidine dimer-type of DNA damage contributes more to UVA- than to UVB-mutagenesis. However, more recently published data on the spectra of UVA-induced mutations in primary human skin cells and in mice suggest that pyrimidine dimers are the most common type of DNA damage-inducing mutations not only with UVB, but also with UVA. As this rebuts a prominent role of non-dimer type of DNA damage in UVA-mutagenesis, we hypothesized that the higher mutation rate at UVA-induced pyrimidine dimers, as compared to UVB-induced ones, is caused by differences in the way UVA- and UVB-exposed cells process DNA damage. Therefore, we here compared cell cycle regulation, DNA repair, and apoptosis in primary human fibroblasts following UVB- and UVA-irradiation, using the same physiologic and roughly equimutagenic doses (100–300 J m−2 UVB, 100–300 kJ m−2 UVA) we have used previously for mutagenesis experiments with the same type of cells. ELISAs for the detection of pyrimidine dimers confirmed that much fewer dimers were formed with these doses of UVA, as compared to UVB. We found that cell cycle arrests (intra-S, G1/S, G2/M), mediated at least in part by activation of p53 and p95, are much more prominent and long-lasting with UVB than with UVA. In contrast, no prominent differences were found between UVA and UVB for other anti-mutagenic cellular responses (DNA repair, apoptosis). Our data suggest that less effective anti-mutagenic cellular responses, in particular different and shorter-lived cell cycle arrests, render pyrimidine dimers induced by UVA more mutagenic than pyrimidine dimers induced by UVB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. El Ghissassi, R. Baan, K. Straif, Y. Grosse, B. Secretan, V. Bouvard, L. Benbrahim-Talla, N. Guha, C. Freeman, L. Galichet, V. Cogliano, and on behalf of the WHO International Agency for Research on Cancer Monograph Working Group, A review of human carcinogens - part D: radiation, Lancet Oncol., 2009, 10, 751–752.

    PubMed  Google Scholar 

  2. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2005, 571, 3–17.

    CAS  Google Scholar 

  3. C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    CAS  PubMed  Google Scholar 

  4. S. E. Freeman, R. W. Gange, J. C. Sutherland, E. A. Matzinger, B. M. Sutherland, Production of pyrimidine dimers in DNA of human skin exposed in situ to UVA radiation, J. Invest. Dermatol., 1987, 88, 430–433.

    CAS  PubMed  Google Scholar 

  5. T. Matsunaga, K. Hieda, O. Nikaido, Wavelength dependent formation of thymine dimers and (6–4) photoproducts in DNA by monochromatic ultraviolet light ranging from 150 to 365 nm, Photochem. Photobiol., 1991, 54, 403–410.

    CAS  PubMed  Google Scholar 

  6. R. D. Ley, A. Fourtanier, UVA1-induced edema and pyrimidine dimers in murine skin, Photochem. Photobiol., 2000, 72, 485–487.

    CAS  PubMed  Google Scholar 

  7. A. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden, C. A. Chadwick, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111, 936–940.

    CAS  PubMed  Google Scholar 

  8. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel, E. Sage, Wavelengths dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.

    CAS  PubMed  Google Scholar 

  9. T. Douki, D. Perdiz, P. Grof, Z. Kuluncsics, E. Moustacchi, J. Cadet, E. Sage, Oxidation of guanine in cellular DNA by solar UV radiation: biological role, Photochem. Photobiol., 1999, 70, 184–190.

    CAS  PubMed  Google Scholar 

  10. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., 2004, 556, 135–142.

    CAS  PubMed  Google Scholar 

  11. T. M. Rünger, U. P. Kappes, Mechanisms of mutation formation with long-wave ultraviolet light (UVA), Photodermatol., Photoimmunol. Photomed., 2008, 24, 2–10.

    PubMed  Google Scholar 

  12. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister, T. M. Rünger, Short- and long-wave ultraviolet light (UVB and UVA) induce similar mutations in human skin cells, J. Invest. Dermatol., 2006, 126, 667–675.

    CAS  PubMed  Google Scholar 

  13. C. Robert, H. Mueller, A. Benoit, L. Dubertret, A. Sarasin, A. Stary, Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line, J. Invest. Dermatol., 1996, 106, 721–728.

    CAS  PubMed  Google Scholar 

  14. H. Ikehata, K. Kawai, J. Komura, K. Sakatsume, L. Wang, M. Imai, S. Higashi, O. Nikaido, K. Yamamoto, K. Hieda, M. Watanabe, H. Kasai, T. Ono, UVA1 genotoxicity is meditated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin, J. Invest. Dermatol., 2008, 128, 2289–2296.

    CAS  PubMed  Google Scholar 

  15. I. C. Enninga, R. T. L. Groenendijk, A. R. Filon, A. A. van Zeeland, J. W. I. M. Simons, The wavelength dependence of U.V.-induced pyrimidine dimer formation, cell killing and mutation induction in human diploid skin fibroblasts, Carcinogenesis, 1986, 7, 1829–1836.

    CAS  PubMed  Google Scholar 

  16. F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, W. H. van, H. Slaper, J. C. van der Leun, F. R. de Gruijl, H. J. Sterenborg, P. D. Forbes, R. E. Davies, C. Cole, G. Kelfkens, H. van Weelden, H. Slaper, J. C. van der Leun, Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice, Cancer Res., 1993, 53, 53–60.

    PubMed  Google Scholar 

  17. F. R. de Gruijl, Photocarcinogenesis: UVA vs. UVB, Methods Enzymol., 2000, 319, 359–366.

    PubMed  Google Scholar 

  18. P. C. Hanawalt, D. J. Crowley, J. M. Ford, A. K. Ganesan, D. R. Lloyd, T. Nouspikel, C. A. Smith, G. Spivak, S. Tornaletti, Regulation of nucleotide excision repair in bacteria and mammalian cells, Cold Spring Harbor Symp. Quant. Biol., 2000, 65, 183–191.

    CAS  PubMed  Google Scholar 

  19. S. Bhana, D. R. Lloyd, The role of p53 in DNA damage-mediated cytotoxicity overrides its ability to regulate nucleotide excision repair in human fibroblasts, Mutagenesis, 2008, 23, 43–50.

    CAS  PubMed  Google Scholar 

  20. B. M. Stanulis-Praeger, B. A. Gilchrest, Effect of donor age and prior sun exposure on growth inhibition of cultured human dermal fibroblasts by all trans-retinoic acid, J. Cell. Physiol., 1989, 139, 116–124.

    CAS  PubMed  Google Scholar 

  21. K. Werninghaus, R. M. Handjani, B. A. Gilchrest, Protective effect of alpha-tocopherol in carrier liposomes on ultraviolet-mediated human epidermal cell damage in vitro, Photodermatol., Photoimmunol. Photomed., 1991, 8, 236–242.

    CAS  PubMed  Google Scholar 

  22. A. Stary, A. Sarasin, Ultraviolet A- and singlet oxygen-induced mutation spectra,, Methods Enzymol., 2000, 319, 153–165.

    CAS  PubMed  Google Scholar 

  23. R. M. Sayre, C. Cole, W. Billhimer, J. Stanfield, R. D. Ley, Spectral comparison of solar simulators and sunlight, Photodermatol., Photoimmunol. Photomed., 1990, 7, 159–165.

    CAS  PubMed  Google Scholar 

  24. K. M. Thoms, C. Kuschal, E. Oetjen, T. Mori, N. Kobayashi, P. Laspe, L. Boeckmann, M. P. Schon, S. Emmert, Cyclosporin A, but not everolimus, inhibits DNA repair mediated by calcineurin: implications for tumorigenesis under immunosuppression, Exp. Dermatol., 2011, 20, 232–236.

    CAS  PubMed  Google Scholar 

  25. T. Mori, M. Nakane, T. Hattori, T. Matsunaga, M. Ihara, O. Nikaido, T. Mori, M. Nakane, T. Hattori, T. Matsunaga, M. Ihara, O. Nikaido, Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6–4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA, Photochem. Photobiol., 1991, 54, 225–232.

    CAS  PubMed  Google Scholar 

  26. A. de Laat, M. van Tilburg, J. C. von der Leun, W. A. van Vloten, F. R. de Gruijl, Cell cycle kinetics following UVA irradiation in comparison to UVB and UVC irradiation, Photochem. Photobiol., 1996, 63, 492–497.

    PubMed  Google Scholar 

  27. R. M. Snapka, Bromodeoxyuridine photodamage in studies of UVA damage and the cell cycle, DNA Repair, 2009, 8, 3.

    CAS  PubMed  Google Scholar 

  28. T. M. Rünger, B. Epe, K. Möller, Repair of ultraviolet B and singlet oxygen-induced DNA damage in xeroderma pigmentosum cells, J. Invest. Dermatol., 1995, 104, 68–73.

    PubMed  Google Scholar 

  29. S. Emmert, H. Slor, D. B. Busch, S. Batko, R. B. Albert, D. Coleman, S. G. Khan, B. Abu-Libdeh, J. J. DiGiovanna, B. B. Cunningham, M. M. Lee, J. Crollick, H. Inui, T. Ueda, M. Hedayati, L. Grossman, T. Shahlavi, J. E. Cleaver, K. H. Kraemer, Relationship of neurologic degeneration to genotype in three xeroderma pigmentosum group G patients, J. Invest. Dermatol., 2002, 118, 972–982.

    CAS  PubMed  Google Scholar 

  30. T. M. Rünger, B. Epe, K. Möller, Processing of directly and indirectly ultraviolet-induced DNA damage in human cells, Recent Results Cancer Res., 1995, 139, 31–42.

    PubMed  Google Scholar 

  31. S. Emmert, N. Kobayashi, S. G. Khan, K. H. Kraemer, The xeroderma pigmentosum group C gene leads to selective repair of cyclobutane pyrimidine dimers rather than 6-4 photoproducts, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2151–2156.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Dunn, M. Potter, A. Rees, T. M. Rünger, Activation of the Fanconi anemia/BRCA pathway and recombination repair in the cellular response to solar UV, Cancer Res., 2006, 66, 11140–11147.

    CAS  PubMed  Google Scholar 

  33. J. M. Ford, Regulation of DNA damage recognition and nucleotide excision repair: another role for p53, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2005, 577, 195–202.

    CAS  Google Scholar 

  34. S. Adimoolam, J. M. Ford, p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 12985–12990.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. M. L. Smith, Y. R. Seo, p53 regulation of DNA excision repair pathways, Mutagenesis, 2002, 17, 149–156.

    CAS  PubMed  Google Scholar 

  36. L. Latonen, M. Laiho, Cellular UV damage responses - functions of tumor suppressor p53, Biochim. Biophys. Acta, 2005, 1755, 71–89.

    CAS  PubMed  Google Scholar 

  37. D. Decraene, P. Agostinis, A. Pupe, P. de Haes, M. Garmyn, Acute response of human skin to solar radiation: regulation and function of the p53 protein, J. Photochem. Photobiol., B, 2001, 63, 78–83 B - Biology.

    CAS  PubMed  Google Scholar 

  38. L. A. de, E. D. Kroon, F. R. de Gruijl, Cell cycle effects and concomitant p53 expression in hairless murine skin after longwave UVA (365 nm) irradiation: a comparison with UVB irradiation, Photochem. Photobiol., 1997, 65, 730–735.

    Google Scholar 

  39. P. M. Girard, M. Pozzebon, F. Delacote, T. Douki, V. Smirnova, E. Sage, Inhibition of S-phase progression triggered by UVA-induced ROS does not require a functional DNA damage checkpoint response in mammalian cells, DNA Repair, 2008, 7, 1500–1516.

    CAS  PubMed  Google Scholar 

  40. G. Maga, G. Villani, E. Crespan, U. Wimmer, E. Ferrari, B. Bertocci, U. Hubscher, 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins, Nature, 2007, 447, 606–608.

    CAS  PubMed  Google Scholar 

  41. J. L. Rizzo, J. Dunn, A. Rees, T. M. Rünger, No formation of DNA double-strand breaks and no activation of recombination repair with UVA, J. Invest. Dermatol., 2011, 131, 1139–1148.

    CAS  PubMed  Google Scholar 

  42. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Rünger.

Additional information

Contribution to the themed issue on the biology of UVA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rünger, T.M., Farahvash, B., Hatvani, Z. et al. Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochem Photobiol Sci 11, 207–215 (2012). https://doi.org/10.1039/c1pp05232b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05232b

Navigation