Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transethnic meta-analysis suggests genetic variation in the HEME pathway influences potassium response in patients treated with hydrochlorothiazide

Abstract

Hypokalemia is a recognized adverse effect of thiazide diuretic treatment. This phenomenon, which may impair insulin secretion, has been suggested to be a reason for the adverse effects on glucose metabolism associated with thiazide diuretic treatment of hypertension. However, the mechanisms underlying thiazide diuretic-induced hypokalemia are not well understood. In an effort to identify genes or genomic regions associated with potassium response to hydrochlorothiazide, without a priori knowledge of biologic effects, we performed a genome-wide association study and a multiethnic meta-analysis in 718 European- and African-American hypertensive participants from two different pharmacogenetic studies. Single-nucleotide polymorphisms rs10845697 (Bayes factor=5.560) on chromosome 12, near to the HEME binding protein 1 gene, and rs11135740 (Bayes factor=5.258) on chromosome 8, near to the Mitoferrin-1 gene, reached genome-wide association study significance (Bayes factor >5). These results, if replicated, suggest a novel mechanism involving effects of genes in the HEME pathway influencing hydrochlorothiazide-induced renal potassium loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kaplan NM . Clinical Hypertension. 7th edn. Williams & Wilkins: Baltimore, MD, 1998.

    Google Scholar 

  2. Sica DA . Diuretic-related side effects: development and treatment. J Clin Hypertens (Greenwich, CT) 2004; 6: 532–540.

    Article  Google Scholar 

  3. Shafi T, Appel LJ, Miller ER III, Klag MJ, Parekh RS . Changes in serum potassium mediate thiazide-induced diabetes. Hypertension 2008; 52: 1022–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL . Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006; 48: 219–224.

    Article  CAS  PubMed  Google Scholar 

  5. Eriksson JW, Jansson PA, Carlberg B, Hagg A, Kurland L, Svensson MK, et al. Hydrochlorothiazide, but not Candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the mechanisms for the diabetes preventing effect of Candesartan (MEDICA) Study. Hypertension 2008; 52: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  6. Smith SM, Anderson SD, Wen S, Gong Y, Turner ST, Cooper-Dehoff RM, et al. Lack of correlation between thiazide-induced hyperglycemia and hypokalemia: subgroup analysis of results from the pharmacogenomic evaluation of antihypertensive responses (PEAR) study. Pharmacotherapy 2009; 29: 1157–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morris AP . Transethnic meta-analysis of genomewide association studies. Genet Epidemiol 2011; 35: 809–822.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson JA, Boerwinkle E, Zineh I, Chapman AB, Bailey K, Cooper-Dehoff RM, et al. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J 2009; 157: 442–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chapman AB, Schwartz GL, Boerwinkle E, Turner ST . Predictors of antihypertensive response to a standard dose of hydrochlorothiazide for essential hypertension. Kidney Int 2002; 61: 1047–1055.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Willer C, Sanna S, Abecasis G . Genotype imputation. Annu Rev Genomics Hum Genet 2009; 10: 387–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aulchenko YS, Struchalin MV, van Duijn CM . ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinform 2010; 11: 134.

    Article  Google Scholar 

  12. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  13. Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, et al. Demonstrating stratification in a European American population. Nat Genet 2005; 37: 868–872.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Chua HX, Chen P, Ong RT, Sim X, Zhang W, et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum Mol Genet 2013; 22: 2303–2311.

    Article  CAS  PubMed  Google Scholar 

  15. Stephens M, Balding DJ . Bayesian statistical methods for genetic association studies. Nat Rev Genet 2009; 10: 681–690.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, et al. Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci USA 2009; 106: 16263–16268.

    Article  CAS  PubMed  Google Scholar 

  17. Micaelo NM, Macedo AL, Goodfellow BJ, Felix V . Tetrapyrrole binding affinity of the murine and human p22HBP heme-binding proteins. J Mol Graph Model 2010; 29: 396–405.

    Article  CAS  PubMed  Google Scholar 

  18. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, et al. Mitoferrin is essential for erythroid iron assimilation. Nature 2006; 440: 96–100.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan X, Fleming MD, Hamza I . Heme transport and erythropoiesis. Curr Opin Chem Biol 2013; 17: 204–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang XD, Xu R, Reynolds MF, Garcia ML, Heinemann SH, Hoshi T . Haem can bind to and inhibit mammalian calcium-dependent Slo1 BK channels. Nature 2003; 425: 531–535.

    Article  CAS  PubMed  Google Scholar 

  21. Taniguchi J, Guggino WB . Membrane stretch: a physiological stimulator of Ca2+-activated K+ channels in thick ascending limb. Am J Physiol 1989; 257: F347–F352.

    Article  CAS  PubMed  Google Scholar 

  22. Guggino SE, Guggino WB, Green N, Sacktor B . Ca2+-activated K+ channels in cultured medullary thick ascending limb cells. Am J Physiol 1987; 252: C121–C127.

    Article  CAS  PubMed  Google Scholar 

  23. Merot J, Poncet V, Bidet M, Tauc M, Poujeol P . Apical membrane ionic channels in the rabbit cortical thick ascending limb in primary culture. Biochim Biophys Acta 1991; 1070: 387–400.

    Article  CAS  PubMed  Google Scholar 

  24. Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Bidet M, et al. CFTR-dependent and -independent swelling-activated K+ currents in primary cultures of mouse nephron. Am J Physiol Renal Physiol 2003; 284: F812–F828.

    Article  CAS  PubMed  Google Scholar 

  25. Pluznick JL, Sansom SC . BK channels in the kidney: role in K(+) secretion and localization of molecular components. Am J Physiol Renal Physiol 2006; 291: F517–F529.

    Article  CAS  PubMed  Google Scholar 

  26. Gray DA, Frindt G, Palmer LG . Quantification of K+ secretion through apical low-conductance K channels in the CCD. Am J Physiol Renal Physiol 2005; 289: F117–F126.

    Article  CAS  PubMed  Google Scholar 

  27. Karnes JH, McDonough CW, Gong Y, Vo TT, Langaee TY, Chapman AB, et al. Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment. Pharmacogenom J 2012; 13: 430–436.

    Article  Google Scholar 

  28. Maitland-van der Zee AH, Turner ST, Schwartz GL, Chapman AB, Klungel OH, Boerwinkle E . A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide. Pharmacogenet Genom 2005; 15: 287–293.

    Article  CAS  Google Scholar 

  29. Horrigan FT, Heinemann SH, Hoshi T . Heme regulates allosteric activation of the Slo1 BK channel. J Gen Physiol 2005; 126: 7–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge and thank the valuable contributions of the study participants, study physicians, support staff and the technical assistance: Zhiying Wang, Megan Grove, Jodie Van De Rostyne, Jeremy Palbicki, Robert Tarrell and Prabin Thapa. GERA was supported by NIH Grants HL74735 and HL53335, and the Mayo Foundation. PEAR was supported by an NIH Grant U01 GM074492, funded as part of the Pharmacogenomics Research Network. This work is also supported by the following grants from the NIH National Center for Research Resources: Grants M01 RR00082 and UL1 RR029890 to the University of Florida, Grants UL1 RR025008 and M01 RR00039 to Emory University and Grant UL1 RR024150 to Mayo Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Boerwinkle.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del-Aguila, J., Cooper-DeHoff, R., Chapman, A. et al. Transethnic meta-analysis suggests genetic variation in the HEME pathway influences potassium response in patients treated with hydrochlorothiazide. Pharmacogenomics J 15, 153–157 (2015). https://doi.org/10.1038/tpj.2014.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.46

Search

Quick links