Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Implications
  • Published:

Clinical Implication

Pharmacogenetics in the treatment of breast cancer

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Weinshilboum R . Inheritance and drug response. N Engl J Med 2003; 348: 529–537.

    Article  PubMed  Google Scholar 

  2. Evans WE, McLeod HL . Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med 2003; 348: 538–549.

    Article  CAS  PubMed  Google Scholar 

  3. Guttmacher AE, Collins FS . Welcome to the genomic era. N Engl J Med 2003; 349: 996–998.

    Article  CAS  PubMed  Google Scholar 

  4. Rothstein M . Pharmacogenomics: Social Ethical and Clinical Dimensions. Wiley, Hoboken, NJ 2003.

    Book  Google Scholar 

  5. Isaacs C, Stearns V, Hayes DF . New prognostic factors for breast cancer recurrence. Semin Oncol 2001; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  6. Perou CM et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  7. van't Veer LJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536.

    Article  CAS  Google Scholar 

  8. Chang JC et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. The Lancet 2003; 362: 362–369.

    Article  CAS  Google Scholar 

  9. Pusztai L et al. Emerging science: prospective validation of gene expression profiling-based prediction of complete pathologic response to neoadjuvant paclitaxel/FAC chemotherapy in breast cancer. Proc Am Soc Clin Oncol 2003; 22: 1a.

    Google Scholar 

  10. Rae JM et al. Genotyping for polymorphic drug metabolizing enzymes from paraffin-embedded and immunohistochemically stained tumor samples. Pharmacogenetics 2003; 13: 501–507.

    Article  CAS  PubMed  Google Scholar 

  11. Hershman D et al. Ethnic neutropenia and treatment delay in African American women undergoing chemotherapy for early-stage breast cancer. J Natl Cancer Inst 2003; 95: 1545–1548.

    Article  PubMed  Google Scholar 

  12. Stearns V et al. Coprescription of paroxetine and tamoxifen decreases active tamoxifen metabolite plasma concentrations in a CYP2D6-dependant manner. J Natl Cancer Inst (2003); 95: 1758–1764.

    Article  CAS  PubMed  Google Scholar 

  13. Early Breast Cancer Trialist's Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomised trials. Lancet 1998; 351: 1451–1467.

  14. Osborne CK . Tamoxifen in the treatment of breast cancer. N Engl J Med 1998; 339: 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  15. Gallacchi P et al. Increased expression of estrogen-receptor exon-5-deletion variant in relapse tissues of human breast cancer. Int J Cancer 1998; 79: 44–48.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang QX, Borg A, Wolf DM, Oesterreich S, Fuqua SA . An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res 1997; 57: 1244–1249.

    CAS  PubMed  Google Scholar 

  17. Cuzick J et al. Overview of the main outcomes in breast-cancer prevention trials. Lancet 2003; 361: 296–300.

    Article  CAS  PubMed  Google Scholar 

  18. Furr BJ, Jordan VC . The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 1984; 25: 127–205.

    Article  CAS  PubMed  Google Scholar 

  19. Morocho A et al. Characterization of tamoxifen metabolism to a novel, putative active metabolite. Clin Pharmacol Ther 2000; 69: p68.

    Google Scholar 

  20. Stearns V Unpublished data 2004.

  21. Nowell S et al. Association between sulfotransferase 1A1 genotype and survival of breast cancer patients receiving tamoxifen therapy. J Natl Cancer Inst 2002; 94: 1635–1640.

    Article  CAS  PubMed  Google Scholar 

  22. Esteller M, Garcia A, Martinez-Palones JM, Xercavins J, Reventos J . Endometrial carcinoma in tamoxifen-treated breast cancer patient: clinicopathological, immunohistochemical, and genetic analysis. Int J Gynecol Pathol 1999; 18: 387–391.

    Article  CAS  PubMed  Google Scholar 

  23. Reis SE et al. Cardiovascular effects of tamoxifen in women with and without heart disease: breast cancer prevention trial. National Surgical Adjuvant Breast and Bowel Project Breast Cancer Prevention Trial Investigators. J Natl Cancer Inst 2001; 93: 16–21.

    Article  CAS  PubMed  Google Scholar 

  24. Tanus-Santos JE et al. Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics 2002; 12: 407–413.

    Article  CAS  PubMed  Google Scholar 

  25. Duggan C, Marriott K, Edwards R, Cuzick J . Inherited and acquired risk factors for venous thromboembolic disease among women taking tamoxifen to prevent breast cancer. J Clin Oncol 2003; 21: 3588–3593.

    Article  CAS  PubMed  Google Scholar 

  26. Rehman MI et al. ER-a and ER-b genotypes predict tamoxifen effects on serum lipids in breast cancer patients. Clin Pharmacol Ther 2004; 75: p2.

    Article  Google Scholar 

  27. Yoneda K et al. Influence of adjuvant tamoxifen treatment on bone mineral density and bone turnover markers in postmenopausal breast cancer patients in Japan. Cancer Lett 2002; 186: 223–230.

    Article  CAS  PubMed  Google Scholar 

  28. Smith IE, Dowsett M . Aromatase inhibitors in breast cancer. N Engl J Med 2003; 348: 2431–2442.

    Article  CAS  PubMed  Google Scholar 

  29. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 2002;359:2131–2139.

  30. Goss PE et al. A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 2003; 349: 1793–1802.

    Article  CAS  PubMed  Google Scholar 

  31. Kristensen VN et al. Genetic variants of CYP19 (aromatase) and breast cancer risk. Oncogene 2000; 19: 1329–1333.

    Article  CAS  PubMed  Google Scholar 

  32. Modugno F et al. Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 2001; 7: 3092–3096.

    CAS  PubMed  Google Scholar 

  33. Suspitsin EN et al. Distinct prevalence of the CYP19 Delta3(TTTA)(7) allele in premenopausal versus postmenopausal breast cancer patients, but not in control individuals. Eur J Cancer 2002; 38: 1911–1916.

    Article  CAS  PubMed  Google Scholar 

  34. Salmen T et al. Relation of aromatase gene polymorphism and hormone replacement therapy to serum estradiol levels, bone mineral density, and fracture risk in early postmenopausal women. Ann Med 2003; 35: 282–288.

    Article  PubMed  Google Scholar 

  35. Tofteng CL et al. Polymorphisms in the CYP19 and AR genes-relation to bone mass and longitudinal bone changes in postmenopausal women with or without hormone replacement therapy: The Danish Osteoporosis Prevention Study. Calcif Tissue Int 2004; 74: 25–34.

    Article  CAS  PubMed  Google Scholar 

  36. Haiman CA et al. Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res Treat 2003; 77: 27–36.

    Article  CAS  PubMed  Google Scholar 

  37. Grimm SW, Dyroff MC . Inhibition of human drug metabolizing cytochromes P450 by anastrozole, a potent and selective inhibitor of aromatase. Drug Metab Dispos 1997; 25: 598–602.

    CAS  PubMed  Google Scholar 

  38. Baker SD et al. Role of body surface area in dosing of investigational anticancer agents in adults, 1991–2001. J Natl Cancer Inst 2002; 94: 1883–1888.

    Article  CAS  PubMed  Google Scholar 

  39. Colvin M, Padgett CA, Fenselau C . A biologically active metabolite of cyclophosphamide. Cancer Res 1973; 33: 915–918.

    CAS  PubMed  Google Scholar 

  40. Chang TK, Weber GF, Crespi CL, Waxman DJ . Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 1993; 53: 5629–5637.

    CAS  PubMed  Google Scholar 

  41. Chang TK, Yu L, Goldstein JA, Waxman DJ . Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 1997; 7: 211–221.

    Article  CAS  PubMed  Google Scholar 

  42. Roy P, Yu LJ, Crespi CL, Waxman DJ . Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab Dispos 1999; 27: 655–666.

    CAS  PubMed  Google Scholar 

  43. Ren S, Yang JS, Kalhorn TF, Slattery JT . Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 1997; 57: 4229–4235.

    CAS  PubMed  Google Scholar 

  44. Ayash LJ et al. Cyclophosphamide pharmacokinetics: correlation with cardiac toxicity and tumor response. J Clin Oncol 1992; 10: 995–1000.

    Article  CAS  PubMed  Google Scholar 

  45. Slattery JT et al. Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J Clin Oncol 1996; 14: 1484–1494.

    Article  CAS  PubMed  Google Scholar 

  46. Sweeney C et al. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res 2000; 60: 5621–5624.

    CAS  PubMed  Google Scholar 

  47. Perentesis JP . Genetic predisposition and treatment-related leukemia. Med Pediatr Oncol 2001; 36: 541–548.

    Article  CAS  PubMed  Google Scholar 

  48. Kelly KM, Perentesis JP . Polymorphisms of drug metabolizing enzymes and markers of genotoxicity to identify patients with Hodgkin's lymphoma at risk of treatment-related complications. Ann Oncol 2002; 13(Suppl 1): 34–39.

    Article  PubMed  Google Scholar 

  49. Frosst P et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–113.

    Article  CAS  PubMed  Google Scholar 

  50. Toffoli G, Veronesi A, Boiocchi M, Crivellari D . MTHFR gene polymorphism and severe toxicity during adjuvant treatment of early breast cancer with cyclophosphamide, methotrexate, and fluorouracil (CMF). Ann Oncol 2000; 11: 373–374.

    Article  CAS  PubMed  Google Scholar 

  51. Hoffmeyer S et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 97: 3473–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harbottle A, Daly AK, Atherton K, Campbell FC . Role of glutathione S-transferase P1, P-glycoprotein and multidrug resistance-associated protein 1 in acquired doxorubicin resistance. Int J Cancer 2001; 92: 777–783.

    Article  CAS  PubMed  Google Scholar 

  53. Ambrosone CB et al. Polymorphisms in glutathione S-transferases (GSTM1 and GSTT1) and survival after treatment for breast cancer. Cancer Res 2001; 61: 7130–7135.

    CAS  PubMed  Google Scholar 

  54. Kafka A et al. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int J Oncol 2003; 22: 1117–1121.

    CAS  PubMed  Google Scholar 

  55. Innocenti F, Iyer L, Ramirez J, Green MD, Ratain MJ . Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos 2001; 29: 686–692.

    CAS  PubMed  Google Scholar 

  56. Bahadur N et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6alpha-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 1579–1589.

    Article  CAS  PubMed  Google Scholar 

  57. Dai D et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11: 597–607.

    Article  CAS  PubMed  Google Scholar 

  58. Maeno K et al. Mutation of the class I beta-tubulin gene does not predict response to paclitaxel for breast cancer. Cancer Lett 2003; 198: 89–97.

    Article  CAS  PubMed  Google Scholar 

  59. Clarke SJ, Rivory LP . Clinical pharmacokinetics of docetaxel. Clin Pharmacokinet 1999; 36: 99–114.

    Article  CAS  PubMed  Google Scholar 

  60. Watkins PB . Noninvasive tests of CYP3A enzymes. Pharmacogenetics 1994; 4: 171–184.

    Article  CAS  PubMed  Google Scholar 

  61. Hirth J et al. The effect of an individual's cytochrome CYP3A4 activity on docetaxel clearance. Clin Cancer Res 2000; 6: 1255–1258.

    CAS  PubMed  Google Scholar 

  62. Wagner D . CYP3A4 and the erythromycin breath test. Clin Pharmacol Ther 1998; 64: 129–130.

    Article  CAS  PubMed  Google Scholar 

  63. Schott A, Taylor J, Baker L . Individualized chemotherapy dosing based on metabolic phenotype. Proc Am Soc Clin Oncol 2001; 20: 77a.

    Google Scholar 

  64. Flockhart DA, Rae JM . Cytochrome P450 3A pharmacogenetics: the road that needs traveled. Pharmacogenomics J 2003; 3: 3–5.

    Article  CAS  PubMed  Google Scholar 

  65. Kuehl P et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  66. Goh BC et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002; 20: 3683–3690.

    Article  CAS  PubMed  Google Scholar 

  67. Lu Z, Zhang R, Diasio RB . Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res 1993; 53: 5433–5438.

    CAS  PubMed  Google Scholar 

  68. Diasio RB . The role of dihydropyrimidine dehydrogenase (DPD) modulation in 5-FU pharmacology. Oncology (Huntington) 1998; 12: 23–27.

    CAS  Google Scholar 

  69. Innocenti F, Ratain MJ . Correspondence re: Raida M et al., prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin Cancer Res 2002; 8: 1314 author reply 1315–6.

    PubMed  Google Scholar 

  70. Liu J et al. Thymidylate synthase as a translational regulator of cellular gene expression. Biochim Biophys Acta 2002; 1587: 174–182.

    Article  CAS  PubMed  Google Scholar 

  71. Kaneda S et al. Role in translation of a triple tandemly repeated sequence in the 5′-untranslated region of human thymidylate synthase mRNA. Nucleic Acids Res 1987; 15: 1259–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K . Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 1995; 20: 191–197.

    Article  CAS  PubMed  Google Scholar 

  73. Marsh S et al. Novel thymidylate synthase enhancer region alleles in African populations. Hum Mutat 2000; 16: 528.

    Article  CAS  PubMed  Google Scholar 

  74. Kawakami K, Watanabe G . Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 2003; 63: 6004–6007.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Damon Runyon-Lilly Clinical Investigator Award CI-3 from the Damon Runyon Cancer Research Foundation (VS), a Pharmacogenetics Research Network grant, U-01 GM61373 (DF), R-01 GM56898 (DF), a clinical pharmacology training grant 5T32-GM-08425 (DF) from the National Institute of General Medical Sciences, and NIH CA 88843 (NED) all from the National Cancer Institute, Bethesda, MD.

We thank Drs Zeruesenay Desta, Daniel FHayes, Michael D Johnson, and James Rae for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Stearns.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stearns, V., Davidson, N. & Flockhart, D. Pharmacogenetics in the treatment of breast cancer. Pharmacogenomics J 4, 143–153 (2004). https://doi.org/10.1038/sj.tpj.6500242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500242

This article is cited by

Search

Quick links