Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomic analysis of a mouse model of immunoglobulin A nephropathy reveals an enhanced PDGF–EDG5 cascade

Abstract

The molecular mechanism of immunoglobulin A nephropathy (IgAN), the most common primary renal glomerular disease worldwide, is unknown. HIGA (high serum IgA) mouse is a valid model of IgAN showing almost all of the pathological features, including mesangial cell proliferation. Here we elucidate a pattern of gene expression associated with IgAN by analyzing the diseased kidneys on cDNA microarrays. In particular, we showed an enhanced expression of several genes regulating the cell cycle and proliferation, including growth factors and their receptors, as well as endothelial differentiation gene-5 (EDG5), a receptor for sphingosine 1-phosphate (SPP). One of the growth factors, platelet-derived growth factor (PDGF) induces a marked upregulation of EDG5 in proliferative mesangial cells, and promotes cell proliferation synergistically with SPP. The genomic approach allows us to identify families of genes involved in a process, and can indicate that enhanced PDGF-EDG5 signaling plays an important role in the progression of IgAN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Emancipator SN, Lamm ME . IgA nephropathy: pathogenesis of the most common form of glomerulonephritis Lab Invest 1989 60: 168–183

    CAS  PubMed  Google Scholar 

  2. Miyawaki S, Muso E, Takeuchi E, Matsushima H, Shibata Y, Sasayama S et al. Selective breeding for high serum IgA levels from noninbred ddY mice: isolation of a strain with an early onset of glomerular IgA deposition Nephron 1997 76: 201–207

    Article  CAS  PubMed  Google Scholar 

  3. Muso E, Yoshida H, Takeuchi E, Yashiro M, Matsushima H, Oyama A et al. Enhanced production of glomerular extracellular matrix in a new mouse strain of high serum IgA ddY mice Kidney Int 1996 50: 1946–1957

    Article  CAS  PubMed  Google Scholar 

  4. Orth SR, Ritz E, Suter-Crazzolara C . Glial cell line-derived neurotrophic factor (GDNF) is expressed in the human kidney and is a growth factor for human mesangial cells Nephrol Dial Transplant 2000 15: 589–595

    Article  CAS  PubMed  Google Scholar 

  5. Kallincos NC, Pollard AN, Couper JJ . Evidence for a functional hepatocyte growth factor receptor in human mesangial cells Regul Pept 1998 74: 137–142

    Article  CAS  PubMed  Google Scholar 

  6. Thomas S, Vanuystel J, Gruden G, Rodriguez V, Burt D, Gnudi L et al. Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease J Am Soc Nephrol 2000 11: 1236–1243

    CAS  PubMed  Google Scholar 

  7. Shankland SJ, Pippin J, Flanagan M, Coats SR, Nangaku M, Gordon KL et al. Mesangial cell proliferation mediated by PDGF and bFGF is determined by levels of the cyclin kinase inhibitor p27Kip1 Kidney Int 1997 51: 1088–1099

    Article  CAS  PubMed  Google Scholar 

  8. Ennulat D, Brown CA, Brown SA . Mitogenic effects of epidermal growth factor and platelet-derived growth factor on canine and equine mesangial cells in vitro Am J Vet Res 1997 58: 1308–1313

    CAS  PubMed  Google Scholar 

  9. Yamabe H, Osawa H, Kaizuka M, Tsunoda S, Shirato K, Tateyama F et al. Platelet-derived growth factor, basic fibroblast growth factor, and interferon gamma increase type IV collagen production in human fetal mesangial cells via a transforming growth factor-beta-dependent mechanism Dial Transplant 2000 15: 872–876

    Article  CAS  Google Scholar 

  10. Yokomizo T, Izumi T, Chang K, Takuwa Y, Shimizu T . A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis Nature 1997 387: 620–624

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki S, Kuroda T, Kazama JI, Imai N, Kimura H, Arakawa M et al. The leukotriene B4 receptor antagonist ONO-4057 inhibits nephrotoxic serum nephritis in WKY rats J Am Soc Nephrol 1999 10: 264–270

    CAS  PubMed  Google Scholar 

  12. Pizzinat N, Girolami JP, Parini A, Pecher C, Ordener C . Serotonin metabolism in rat mesangial cells: involvement of a serotonin transporter and monoamine oxidase A Kidney Int 1999 56: 1391–1399

    Article  CAS  PubMed  Google Scholar 

  13. Okazaki H, Ishizaka N, Sakurai T, Kurokawa K, Goto K, Kumada M et al. Molecular cloning of a novel putative G protein-coupled receptor expressed in the cardiovascular system Biochem Biophys Res Commun 1993 190: 1104–1109

    Article  CAS  PubMed  Google Scholar 

  14. An S, Zheng Y, Bleu T . Sphingosine 1-phosphate-induced cell proliferation, survival, and related signaling events mediated by G protein-coupled receptors Edg3 and Edg5 J Biol Chem 2000 275: 288–296

    Article  CAS  PubMed  Google Scholar 

  15. Pyne S, Pyne NJ . Sphingosine 1-phosphate signaling in mammalian cells Biochem J 2000 349: 385–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goetzl EJ, An S . A subfamily of G protein-coupled cellular receptors for lysophospholipids and lysosphingolipids Adv Exp Med Biol 1999 469: 259–264

    Article  CAS  PubMed  Google Scholar 

  17. An S . Molecular identification and characterization of G protein-coupled receptors for lysophosphatidic acid and sphingosine 1-phosphate Ann NY Acad Sci 2000 905: 25–33

    Article  CAS  PubMed  Google Scholar 

  18. Coroneos E, Martinez M, McKenna S, Kester M . Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines. Implications for cellular proliferation and differentiation J Biol Chem 1995 270: 23305–23309

    Article  CAS  PubMed  Google Scholar 

  19. Kubo S, Kim ST, Takasugi M, Kuroiwa A . Pathogenetic mechanisms involved in mesangial interposition in IgA nephropathy Nephron 1994 68: 308–313

    Article  CAS  PubMed  Google Scholar 

  20. Matsuda M, Shikata K, Makino H, Sugimoto H, Ota K, Akiyama K et al. Gene expression of PDGF and PDGF receptor in various forms of glomerulonephritis Am J Nephrol 1997 17: 25–31

    Article  CAS  PubMed  Google Scholar 

  21. Nakajima M, Hewitson TD, Mathews DC, Kincaid SP . Platelet-derived growth factor mesangial deposits in mesangial IgA glomerulonephritis Nephrol Dial Transplant 1991 6: 11–16

    Article  CAS  PubMed  Google Scholar 

  22. Niemir ZI, Stein H, Noronha IL, Kruger C, Andrassy K, Ritz E et al. PDGF and TGF-beta contribute to the natural course of human IgA glomerulonephritis Kidney Int 1995 48: 1530–1541

    Article  CAS  PubMed  Google Scholar 

  23. Wang MB, Billings KR, Venkatesan N, Hall FL, Srivatsan ES . Inhibition of cell proliferation in head and neck squamous cell carcinoma cell lines with antisense cyclin D1 Otolaryngol Head Neck Surg 1998 119: 593–599

    Article  CAS  PubMed  Google Scholar 

  24. Oren R, Takahashi S, Doss C, Levy R, Levy S . TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins Mol Cell Biol 1990 10: 4007–4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uda S, Yoshimura A, Sugenoya Y, Inui K, Taira T, Ideura T . Mesangial proliferative nephritis in man is associated with increased expression of the cell survival factor, Bcl-2 Am J Nephrol 1998 18: 281–295

    Article  Google Scholar 

  26. Sandau KB, Brune B . Up-regulation of Bcl-2 by redox signals in glomerular mesangial cells Cell Death Differ 2000 7: 118–125

    Article  CAS  PubMed  Google Scholar 

  27. Del Sal G, Ruaro ME, Philipson L, Schneider C . The growth arrest-specific gene, gas1, is involved in growth suppression Cell 1992 70: 595–607

    Article  CAS  PubMed  Google Scholar 

  28. Rouault JP, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L et al. BTG1, a member of a new family of antiproliferative genes EMBO J 1992 11: 1663–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Motohashi K, Shibata S, Ozaki Y, Yatomi Y, Igarashi Y . Identification of lysophospholipid receptors in human platelets: the relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate FEBS Lett 2000 468: 189–193

    Article  CAS  PubMed  Google Scholar 

  30. Gonda K, Okamoto H, Takuwa N, Yatomi Y, Okazaki H, Sakurai T et al. The novel sphingosine 1-phosphate receptor AGR16 is coupled via pertussis toxin-sensitive and -insensitive G-proteins to multiple signaling pathways Biochem J 1999 337: 67–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Couser WG, Johnson RJ . Mechanisms of progressive renal disease in glomerulonephritis Am J Kidney Dis 1994 23: 193–198

    Article  CAS  PubMed  Google Scholar 

  32. Inoue CN, Epstein M, Foster HG, Hotta O, Kondo Y, Iinuma K . Lysophosphatidic acid and mesangial cells: implications for renal diseases Clin Sci (Colch) 1999 96: 431–436

    Article  CAS  Google Scholar 

  33. Yatomi Y, Ruan F, Hakomori S, Igarashi Y . Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets Blood 1995 86: 193–202

    CAS  PubMed  Google Scholar 

  34. Yatomi Y, Yamamura S, Ruan F, Igarashi Y . Sphingosine 1-phosphate induces platelet activation through an extracellular action and shares a platelet surface receptor with lysophosphatidic acid J Biol Chem 1997 272: 5291–5297

    Article  CAS  PubMed  Google Scholar 

  35. Benton AM, Gerrard JM, Michiel T, Kindom SE . Are lysophosphatidic acids or phosphatidic acids involved in stimulus activation coupling in platelets? Blood 1982 60: 642–649

    CAS  PubMed  Google Scholar 

  36. Rupprecht HD, Dann P, Sukhatme VP, Sterzel RB, Coleman DL . Effect of vasoactive agents on induction of Egr-1 in rat mesangial cells: correlation with mitogenicity Am J Physiol 1992 263: 623–636

    Article  Google Scholar 

  37. Bonaldo MF, Lennon G, Soares MB . Normalization and subtraction: two approaches to facilitate gene discovery Genome Res 1996 6: 791–806

    Article  CAS  PubMed  Google Scholar 

  38. Katsuma S, Shiojima S, Hirasawa A, Suzuki Y, Ikawa H, Takagaki K et al. Functional genomic search of G-protein coupled receptors (GPCR) using microarrays with normalized cDNA library Meth Enzymol 2001 345: 585–600

    Article  CAS  Google Scholar 

  39. Dong G, Loukinova E, Chen Z, Gangi L, Chanturita TI, Liu ET et al. Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NF-kappaB signal pathway Cancer Res 2001 61: 4797–4808

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs S Stojilkovic (National Institute of Child Health and Human Development, National Institutes of Health) and GE Smyth (Research Laboratories, Nippon Shinyaku Co) for critical reading of the manuscript. This work was supported in part by research grants from the Scientific Fund of the Ministry of Education, Science, and Culture of Japan, the Japan Health Science Foundation and Ministry of Human Health and Welfare, the Organization for Pharmaceutical Safety and Research (OPSR), and a Grant for Liberal Harmonious Research Promotion System from the Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Tsujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsuma, S., Shiojima, S., Hirasawa, A. et al. Genomic analysis of a mouse model of immunoglobulin A nephropathy reveals an enhanced PDGF–EDG5 cascade. Pharmacogenomics J 1, 211–217 (2001). https://doi.org/10.1038/sj.tpj.6500043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500043

Keywords

Search

Quick links