Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma

Abstract

Epigenetic alterations and the resulting inactivation of tumor suppressor genes often contribute to the development of various cancers. To identify novel candidates that may be silenced by aberrant methylation in esophageal squamous-cell carcinoma (ESCC), we analysed ESCC cell lines by a recently developed method known as bacterial artificial chromosome array-based methylated CpG island amplification (BAMCA), and selected candidates through BAMCA-assisted strategy. In the course of this program, we identified frequent CpG methylation-dependent silencing of the gene encoding cellular retinoic acid binding protein 1 (CRABP1) in our panel of ESCC cell lines. Expression of CRABP1 mRNA was restored in gene-silenced ESCC cells after treatment with 5-aza 2′-deoxycytidine. The DNA methylation status of the CRABP1 CpG island with clear promoter activity correlated inversely with expression of this gene. CpG methylation of CRABP1 was frequently observed in primary ESCC tissues as well. Restoration of CRABP1 expression in ESCC cells lacking the protein reduced cell growth by inducing arrest at G0–G1, whereas knockdown of the gene in cells expressing CRABP1 promoted cell growth. Among 113 primary ESCC tumors, the absence of immunoreactive CRABP1 was significantly associated with de-differentiation of cancer cells and with distant lymph-node metastases in the patients. These results indicate that CRABP1 appears to have a tumor-suppressor function in esophageal epithelium, and its epigenetic silencing may play a pivotal role during esophageal carcinogenesis. Its expression status in biopsies or resected tumors might serve as an index for identifying ESCC patients for whom combined therapeutic modalities would be recommended.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • de Bruijn DR, Oerlemans F, Hendriks W, Baats E, Ploemacher R, Wieringa B et al. (1994). Normal development, growth and reproduction in cellular retinoic acid binding protein-I (CRABPI) null mutant mice. Differentiation 58: 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Ruuska SE, Levinthal DJ, Noy N . (1999). Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274: 23695–23698.

    Article  CAS  PubMed  Google Scholar 

  • Donovan M, Olofsson B, Gustafson AL, Dencker L, Eriksson U . (1995). The cellular retinoic acid binding proteins. J Steroid Biochem Mol Biol 53: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Dowlatshahi K, Mehta RG, Levin B, Cerny WL, Skinner DB, Moon RC . (1984). Retinoic-acid-binding protein in normal and neoplastic human esophagus. Cancer 54: 308–311.

    Article  CAS  PubMed  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA . (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463.

    Article  CAS  PubMed  Google Scholar 

  • Fiorella PD, Giguere V, Napoli JL . (1993). Expression of cellular retinoic acid-binding protein (type II) in Escherichia coli. Characterization and comparison to cellular retinoic acid-binding protein (type I). J Biol Chem 268: 21545–21552.

    CAS  PubMed  Google Scholar 

  • Gorry P, Lufkin T, Dierich A, Rochette-Egly C, Decimo D, Dolle P et al. (1994). The cellular retinoic acid binding protein I is dispensable. Proc Natl Acad Sci USA 91: 9032–9036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawthorn L, Stein L, Varma R, Wiseman S, Loree T, Tan D . (2004). TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma. Head Neck 26: 1069–1083.

    Article  PubMed  Google Scholar 

  • Herman JG, Baylin SB . (2003). Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349: 2042–2054.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, de la Chapelle A, Pellegata NS . (2003). Hypermethylation, but not LOH, is associated with the low expression of MT1G and CRABP1 in papillary thyroid carcinoma. Int J Cancer 104: 735–744.

    Article  CAS  PubMed  Google Scholar 

  • Imoto I, Yang ZQ, Pimkhaokham A, Tsuda H, Shimada Y, Imamura M et al. (2001). Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res 61: 6629–6634.

    CAS  PubMed  Google Scholar 

  • Inazawa J, Inoue J, Imoto I . (2004). Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci 95: 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Shimada Y, Hashimoto Y, Kaganoi J, Kan T, Watanabe G et al. (2003). Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res 63: 6320–6326.

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P et al. (2005). Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 97: 1840–1847.

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Yamashita K, Baek JH, Park HL, Carvalho AL, Osada M et al. (2006). N-methyl-D-aspartate receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer. Cancer Res 66: 3409–3418.

    Article  CAS  PubMed  Google Scholar 

  • Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Mori M et al. (2003). Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 63: 3724–3728.

    CAS  PubMed  Google Scholar 

  • Laird PW . (2003). The power and the promise of DNA methylation markers. Nat Rev Cancer 3: 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Mandelker DL, Yamashita K, Tokumaru Y, Mimori K, Howard DL, Tanaka Y et al. (2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res 65: 4963–4968.

    Article  CAS  PubMed  Google Scholar 

  • Means AL, Thompson JR, Gudas LJ . (2000). Transcriptional regulation of the cellular retinoic acid binding protein I gene in F9 teratocarcinoma cells. Cell Growth Differ 11: 71–82.

    CAS  PubMed  Google Scholar 

  • Misawa A, Inoue J, Sugino Y, Hosoi H, Sugimoto T, Hosoda F et al. (2005). Methylation-associated silencing of the nuclear receptor 1I2 gene in advanced-type neuroblastomas, identified by bacterial artificial chromosome array-based methylated CpG island amplification. Cancer Res 65: 10233–10242.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Kato H, Shitara Y, Yoshikawa M, Tajima K, Masuda N et al. (2000). Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma. Cancer 89: 955–962.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Kato H, Fukuchi M, Nakajima M, Kuwano H . (2003). EphA2 overexpression correlates with poor prognosis in esophageal squamous cell carcinoma. Int J Cancer 103: 657–663.

    Article  CAS  PubMed  Google Scholar 

  • Ogino S, Cantor M, Kawasaki T, Brahmandam M, Kirkner G, Weisenberger DJ et al. (2006). CpG island methylator phenotype (CIMP) of colorectal cancer is best characterized by quantitative DNA methylation analysis and prospective cohort studies. Gut 55: 1000–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsu A . (2004). Chemoradiotherapy for esophageal cancer: current status and perspectives. Int J Clin Oncol 9: 444–450.

    Article  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P . (2005). Global Cancer Statistics, 2002. CA Cancer J Clin 55: 74–108.

    Article  PubMed  Google Scholar 

  • Pfoertner S, Goelden U, Hansen W, Toepfer T, Geffers R, Ukena SN et al. (2005). Cellular retinoic acid binding protein I: expression and functional influence in renal cell carcinoma. Tumour Biol 26: 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Pimkhaokham A, Shimada Y, Fukuda Y, Kurihara N, Imoto I, Yang ZQ et al. (2000). Nonrandom chromosomal imbalances in esophageal squamous cell carcinoma cell lines: possible involvement of the ATF3 and CENPF genes in the 1q32 amplicon. Jpn J Cancer Res 91: 1126–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder JD, Busch R, Stein HJ, Fink U, Siewert JR . (1994). Ratio of invaded to removed lymph node are predictors of survival in squamous cell carcinoma of the esophagus. Br J Surg 81: 410–413.

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Matsubara O, Wakiyama H, Tanaka S . (2001). The role of cyclin-dependent kinase inhibitor p27 in squamous cell carcinoma of the esophagus. Pathol Res Pract 197: 157–164.

    Article  CAS  PubMed  Google Scholar 

  • Shibagaki I, Shimada Y, Wagata T, Ikenaga M, Imamura M, Ishizaki K . (1994). Allelotype analysis of esophageal squamous cell carcinoma. Cancer Res 54: 2996–3000.

    CAS  PubMed  Google Scholar 

  • Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T . (1992). Characterization of 21 newly established esophageal cancer cell lines. Cancer 69: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Shirakawa Y, Naomoto Y, Kimura M, Kawashima R, Yamatsuji T, Tamaki T et al. (2000). Topological analysis of p21WAF1/CIP1 expression in esophageal squamous dysplasia. Clin Cancer Res 6: 541–550.

    CAS  PubMed  Google Scholar 

  • Sobin LH, Wittekind CH (ed). (2002). International Union Against Cancer (UICC): TNM Classification of Malignant Tumors 6th edn. Wiley-Liss: New York.

    Google Scholar 

  • Sonoda I, Imoto I, Inoue J, Shibata T, Shimada Y, Chin K et al. (2004). Frequent silencing of low density lipoprotein receptor-related protein 1B (LRP1B) expression by genetic and epigenetic mechanisms in esophageal squamous cell carcinoma. Cancer Res 64: 3741–3747.

    Article  CAS  PubMed  Google Scholar 

  • Stein HJ, Feith M, Bruecher BL, Naehrig J, Sarbia M, Siewert JR . (2005). Early esophageal cancer: pattern of lymphatic spread and prognostic factors for long-term survival after surgical resection. Ann Surg 242: 566–573.

    PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31: 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Toyota M, Ho C, Ahuja N, Jair KW, Li Q, Ohe-Toyota M et al. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59: 2307–2312.

    CAS  PubMed  Google Scholar 

  • Venepally P, Reddy LG, Sani BP . (1996). Characterization of cellular retinoic acid-binding protein I from chick embryo and its ligand binding properties. Arch Biochem Biophys 336: 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Wei LN, Chang L . (1996). Promoter and upstream regulatory activities of the mouse cellular retinoic acid-binding protein-I gene. J Biol Chem 271: 5073–5078.

    Article  CAS  PubMed  Google Scholar 

  • Wei LN, Lee CH . (1994). Demethylation in the 5′-flanking region of mouse cellular retinoic acid binding protein-I gene is associated with its high level of expression in mouse embryos and facilitates its induction by retinoic acid in P19 embryonal carcinoma cells. Dev Dyn 201: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Laird PW . (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M et al. (2002). Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2: 485–495.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Grants-in-aid for scientific research on priority areas and 21st Century center of excellence program for molecular destruction and reconstitution of tooth and bone from the Ministry of Education, Culture, Sports, Science, and Technology, Japan and a grant-in-aid from core research for evolutional science and technology (CREST) of the Japan science and technology corporation (JST).

We are grateful to Professor Yusuke Nakamura (Human Genome Center, Institute of Medical Science, The University of Tokyo) for continuous encouragement throughout this work. We also thank Ayako Takahashi, and Rumi Mori for technical assistance, and Yoriko Fukukawa for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Inazawa.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Imoto, I., Inoue, J. et al. Frequent methylation-associated silencing of a candidate tumor-suppressor, CRABP1, in esophageal squamous-cell carcinoma. Oncogene 26, 6456–6468 (2007). https://doi.org/10.1038/sj.onc.1210459

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210459

Keywords

This article is cited by

Search

Quick links