Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of mitogen-activated protein kinase kinase 4 in cancer

Abstract

Mitogen-activated protein (MAP) kinase kinase 4 (MKK4) is a component of stress activated MAP kinase signaling modules. It directly phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stress, pro-inflammatory cytokines and developmental cues. MKK4 is ubiquitously expressed and the targeted deletion of the Mkk4 gene in mice results in early embryonic lethality. Further studies in mice have indicated a role for MKK4 in liver formation, the immune system and cardiac hypertrophy. In humans, it is reported that loss of function mutations in the MKK4 gene are found in approximately 5% of tumors from a variety of tissues, suggesting it may have a tumor suppression function. Furthermore, MKK4 has been identified as a suppressor of metastasis of prostate and ovarian cancers. However, the role of MKK4 in cancer development appears complex as other studies support a pro-oncogenic role for MKK4 and JNK. Here we review the biochemical and functional properties of MKK4 and discuss the likely mechanisms by which it may regulate the steps leading to the formation of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adam-Stitah S, Penna L, Chambon P, Rochette-Egly C . (1999). Hyperphosphorylation of the retinoid X receptor α by activated c-Jun NH2-terminal kinase. J Biol Chem 274: 18932–18941.

    Article  CAS  PubMed  Google Scholar 

  • Alt JR, Cleveland JL, Hannink M, Diehl JA . (2000). Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14: 3102–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altucci L, Gronemeyer H . (2001). The promise of retinoids to fight against cancer. Nat Rev Cancer 1: 181–193.

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J . (2001). Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Behrens A, Jochum W, Sibilia M, Wagner EF . (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19: 2657–2663.

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL . (2006). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  • Bost F, Caron L, Vial E, Montreau N, Marchetti I, Dejong V et al. (2001). The defective transforming phenotype of c-Jun Ala(63/73) is rescued by mutation of the C-terminal phosphorylation site. Oncogene 20: 7425–7429.

    Article  CAS  PubMed  Google Scholar 

  • Bost F, McKay R, Bost M, Potapova O, Dean NM, Mercola D . (1999). The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. Mol Cell Biol 19: 1938–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y et al. (2003). Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17: 1969–1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA et al. (2002). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31: 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Fornace Jr AJ . (2004). p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92: 95–118.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Higashimoto Y, Gaarde WA, Basrur V, Potapova O, Appella E et al. (2001). Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW et al. (2004). Inactivation of the wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the Ink4a/Arf pathway. Nat Genet 36: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E et al. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18: 6845–6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S et al. (2001). Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol 21: 2743–2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carboni L, Tacconi S, Carletti R, Bettini E, Ferraguti F . (1997). Localization of the messenger RNA for the c-Jun NH2-terminal kinase kinase in the adult and developing rat brain: an in situ hybridization study. Neuroscience 80: 147–160.

    Article  CAS  PubMed  Google Scholar 

  • Casanovas O, Miro F, Estanyol JM, Itarte E, Agell N, Bachs O . (2000). Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J Biol Chem 275: 35091–35097.

    Article  CAS  PubMed  Google Scholar 

  • Cazillis M, Bringuier AF, Delautier D, Buisine M, Bernuau D, Gespach C et al. (2004). Disruption of MKK4 signaling reveals its tumor-suppressor role in embryonic stem cells. Oncogene 23: 4735–4744.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M . (2001). Mammalian MAP kinase signaling cascades. Nature 410: 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Nomura M, She QB, Ma WY, Bode AM, Wang L et al. (2001). Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res 61: 3908–3912.

    CAS  PubMed  Google Scholar 

  • Choi BY, Choi HS, Ko K, Cho YY, Zhu F, Kang BS et al. (2005). The tumor suppressor p16INK4a prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nat Struct Mol Biol 12: 699–707.

    Article  CAS  PubMed  Google Scholar 

  • Choukroun G, Hajjar R, Fry S, del Monte F, Haq S, Guerrero JL et al. (1999). Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-JunNH(2)-terminal kinases. J Clin Invest 104: 391–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey ET, Hongisto V, Dickens M, Davis RJ, Courtney MJ . (2000). Dual roles for c-Jun N-terminal kinase in developmental and stress responses in cerebellar granule neurons. J Neurosci 20: 7602–7613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenda A . (2000). Mitogen-activated protein kinase kinase 4 (MKK4). Int J Biochem Cell Biol 32: 581–587.

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Han SY, Wang C, Su W, Harshyne L, Holgado-Madruga M et al. (2006). c-Jun NH2-terminal kinase 2α2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res 66: 10024–10031.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham SC, Gallmeier E, Hucl T, Dezentje DA, Calhoun ES, Falco G et al. (2006). Targeted deletion of MKK4 in cancer cells: a detrimental phenotype manifests as decreased experimental metastasis and suggests a counterweight to the evolution of tumor-suppressor loss. Cancer Res 66: 5560–5564.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace Jr AJ, Appella E et al. (2006). The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErB2-driven mammary gland tumorigenesis. Oncogene (in press).

  • Deng X, Xiao L, Lang W, Gao F, Ruvolo P, May WS, Jr. (2001). Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 276: 23681–23688.

    Article  CAS  PubMed  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  CAS  PubMed  Google Scholar 

  • Dérijard B, Raingeaud J, Barrett T, Wu I-H, Han J, Ulevitch RJ et al. (1995). Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267: 682–685.

    Article  PubMed  Google Scholar 

  • Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M et al. (2003). Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 112: 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA, Chambers TC . (2000). Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem 275: 29980–29985.

    Article  CAS  PubMed  Google Scholar 

  • Finch A, Holland P, Cooper J, Saklatvala J, Kracht M . (1997). Selective activation of JNK/SAPK by interleukin-1 in rabbit liver is mediated by MKK7. FEBS Lett 418: 144–148.

    Article  CAS  PubMed  Google Scholar 

  • Fleming Y, Armstrong CG, Morrice N, Paterson A, Goedert M, Cohen P . (2000). Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase (SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4 (MKK4) and MKK7. Biochem J 352: 145–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA et al. (1998). SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci USA 95: 6881–6886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Tao J, Li MO, Chi H, Henegariu O, Kaech SM et al. (2005). JNK1 is essential for CD8+ T cell-mediated tumor immune surveillance. J Immunol 175: 5783–5789.

    Article  CAS  PubMed  Google Scholar 

  • Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST et al. (2006). Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 20: 503–515.

    Article  CAS  PubMed  Google Scholar 

  • Goloudina A, Yamaguchi H, Chervyakava DB, Appella E, Fornace Jr AJ, Bulavin DV . (2003). Regulation of human Cdc25A stability by serine phosphorylation is not sufficient to activate a S-phase checkpoint. Cell Cycle 2: 473–478.

    Article  CAS  PubMed  Google Scholar 

  • Ha HY, Cho IH, Lee KW, Lee KW, Song JY, Kim KS et al. (2005). The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1. Dev Biol 277: 184–199.

    Article  CAS  PubMed  Google Scholar 

  • Han ZS, Enslen H, Hu X, Meng X, Wu IH, Barrett T et al. (1998). A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol Cell Biol 18: 3527–3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanks SK, Quinn AN, Hunter T . (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.

    Article  CAS  PubMed  Google Scholar 

  • Hess P, Pihan G, Sawyers CL, Flavell RA, Davis RJ . (2002). Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet 32: 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Hickson JA, Huo D, Vander Griend DJ, Lin A, Rinker-Schaeffer CW, Yamada SD . (2006). The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66: 2264–2270.

    Article  CAS  PubMed  Google Scholar 

  • Ho DT, Bardwell J, Abdollahi M, Bardwell L . (2003). A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates. J Biol Chem 278: 32662–32672.

    Article  CAS  PubMed  Google Scholar 

  • Inoshita S, Takeda K, Hatai T, Terada Y, Sano M, Hata J et al. (2002). Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J Biol Chem 277: 43730–43734.

    Article  CAS  PubMed  Google Scholar 

  • Jaeschke A, Karasarides M, Ventura J-J, Ehrhardt A, Zhang C, Flavell RA et al. (2006). JNK2 is a positive regulator of the c-Jun transcription factor. Mol Cell 23: 899–911.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Chen C, Li Z, Guo W, Gegner JA, Lin S et al. (1996). Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem 271: 17920–17926.

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Spiegelman B, Hanahan D, Wisdom R . (1996). Cellular transformation and malignancy induced by ras requires c-jun. Mol Cell Biol 16: 4504–4511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar N, Delmotte MH, Weston CR, Barrett T, Sheppard BJ, Flavell RA et al. (2003). Morphogenesis of the telencephalic commissure requires scaffold protein JNK-interacting protein 3 (JIP3). Proc Natl Acad Sci USA 100: 9843–9848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy NJ, Davis RJ . (2003). Role of JNK in tumor development. Cell Cycle 2: 199–201.

    CAS  PubMed  Google Scholar 

  • Kennedy NJ, Sluss HK, Jones SN, Bar-Sagi D, Flavell RA, Davis RJ . (2003). Suppression of Ras-stimulated transformation by the JNK signal transduction pathway. Genes Dev 17: 629–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatlani TS, Wislez M, Sun M, Srinivas H, Iwanaga K, Ma L et al. (2006). c-Jun N-terminal kinase is activated in non-small-cell ling cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene (in press).

  • Kim BJ, Ryu SW, Song BJ . (2006). JNK-and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281: 21256–21265.

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Park E, Han JK . (2005). The assembly of POSH-JNK regulates Xenopus anterior neural development. Dev Biol 286: 256–269.

    Article  CAS  PubMed  Google Scholar 

  • Kim HL, Vander Griend DJ, Yang X, Benson DA, Dubauskas Z, Yoshida BA et al. (2001). Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostatic cancers. Cancer Res 61: 2833–2837.

    CAS  PubMed  Google Scholar 

  • Kishimoto H, Nakagawa K, Watanabe T, Kitagawa D, Momose H, Seo J et al. (2003). Different properties of SEK1 and MKK7 in dual phosphorylation of stress-induced activated protein kinase SAPK/JNK in embryonic stem cells. J Biol Chem 278: 16595–16601.

    Article  CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    Article  CAS  PubMed  Google Scholar 

  • Lavoie JN, L'Allemain G, Brunet A, Muller R, Pouyssegur J . (1996). Cyclin D1 expression is regulated positively by p42/p44MAPK and negatively by the p38/HOG-MAPK pathway. J Biol Chem 271: 20608–20616.

    Article  CAS  PubMed  Google Scholar 

  • Lawler S, Cuenda A, Goedert M, Cohen P . (1997). SKK4, a novel activator of stress-activated protein kinase-1 (SAPK1/JNK). FEBS Lett 414: 153–158.

    Article  CAS  PubMed  Google Scholar 

  • Lawler S, Fleming Y, Goedert M, Cohen P . (1998). Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol 8: 1387–1390.

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Oh SH, Suh YA, Baek JH, Papadimitrakopoulou V, Huang S et al. (2005). Response of non-small cell lung cancer cells to the inhibitors of phosphatidylinositol 3-kinase/Akt- and MAPK kinase 4/c-Jun NH2-terminal kinase pathways: an effective therapeutic strategy for lung cancer. Clin Cancer Res 11: 6065–6074.

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Suh YA, Robinson MJ, Clifford JL, Hong WK, Woodgett JR et al. (2000). Stress pathway activation induces phosphorylation of retinoid X receptor. J Biol Chem 275: 32193–32199.

    Article  CAS  PubMed  Google Scholar 

  • Lee J-K, Hwang W-S, Lee Y-D, Han P-L . (1999). Dynamic expression of SEK1 suggests multiple roles of the gene during emryogenesis and in adult brain of mice. Mol Brain Res 66: 133–140.

    Article  CAS  PubMed  Google Scholar 

  • Lei K, Davis RJ . (2003). JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100: 2432–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB et al. (2002). The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22: 4929–4942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leppa S, Saffrich R, Ansorge W, Bohmann D . (1998). Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J 17: 4404–4413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin A, Minden A, Martinetto H, Claret F-X, Lange-Carter C, Mercurio F et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268: 286–290.

    Article  CAS  PubMed  Google Scholar 

  • Lisnock J-M, Griffin P, Calaycay J, Frantz B, Parsons J, O'Keefe SJ et al. (2000). Activation of JNK3α1 requires both MKK4 and MKK7: kinetic characterization of in vitro phosphorylation JNK3α1. Biochemistry 39: 3141–3148.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Aviles S, Grande M, Gonzalez M, Helgesen AL, Alemany V, Sanchez-Piris M et al. (2005). Inactivation of the CDC25 phosphatase by the stress-activated Srk1 kinase in fission yeast. Mol Cell 17: 49–59.

    Article  CAS  PubMed  Google Scholar 

  • Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB . (2005). MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17: 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Mann KK, Padovani AMS, Guo Q, Colosimo AL, Lee HY, Kurie JM et al. (2005). Arsenic trioxide inhibits nuclear receptor function via SEK1/JNK-mediated RXRα phosphorylation. J Clin Invest 115: 2924–2933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo Y, Amano S, Furuya M, Namiki K, Sakurai K, Nishiyama M et al. (2006). Involvement of p38alpha mitogen-activated protein kinase in lung metastasis of tumor cells. J Biol Chem 281: 36767–36775.

    Article  CAS  PubMed  Google Scholar 

  • Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C et al. (1997). Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272: 25238–25242.

    Article  CAS  PubMed  Google Scholar 

  • McDonald PH, Chow C-W, Miller WE, Laporte SA, Field ME, Lin F-T et al. (2000). arrestin-2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290: 1574–1577.

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Matsuzaki K, Yoshida K, Furukawa F, Tahashi Y, Yamagata H et al. (2004). TGF-beta and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation of the linker regions. Oncogene 23: 7416–7429.

    Article  CAS  PubMed  Google Scholar 

  • Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E . (1997). A novel SAPK/JNK kinase, MKK7, stimulated by TNFα and cellular stresses. EMBO J 16: 7045–7053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Nakayama N, Davidson B, Katabuchi H, Kurman RJ, Velculescu VE et al. (2006). Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol Ther 5: 630–634.

    Article  CAS  PubMed  Google Scholar 

  • Nateri AS, Spencer-Dene B, Behrens A . (2005). Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437: 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Nishina H, Bachmann M, Oliveiria-dos-Santos AJ, Kozieradzki I, Fischer KD, Odermatt B et al. (1997a). Impaired CD28-mediated interleukin 2 production and proliferation in stress kinase SAPK/ERK1 kinase (SEK1)/mitogen-activated protein kinase kinase 4 (MKK4)-deficient T lymphocytes. J Exp Med 186: 941–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishina H, Fischer KD, Radvanyi L, Shahinian A, Hakem R, Rubie EA et al. (1997b). Stress-signaling kinase SEK1 protects thymocytes from apoptosis mediated by CD95 and CD3. Nature 385: 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, De la Pompa JL et al. (1999). Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development 126: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P et al. (2004). Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 11: 1192–1197.

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M . (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87.

    CAS  PubMed  Google Scholar 

  • Potapova O, Gorospe M, Bost F, Dean NM, Gaarde WA, Mercola D et al. (2000). c-Jun N-terminal kinase is essential for growth of human T98G glioblastoma cells. J Biol Chem 275: 24767–24775.

    Article  CAS  PubMed  Google Scholar 

  • Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR . (1991). Phosphorylation of c-Jun mediated by MAP kinases. Nature 353: 670–674.

    Article  CAS  PubMed  Google Scholar 

  • Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B et al. (2003). JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38: 899–914.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues GA, Park M, Schlessinger J . (1997). Activation of the JNK pathway is essential for transformation by the Met oncogene. EMBO J 16: 2634–2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF . (2004). Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15: 713–725.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Maeda S, Chang L, Karin M . (2006). Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci USA 103: 10544–10551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, Avruch J et al. (1994). Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating the transcription factor c-Jun. Nature 372: 794–798.

    Article  CAS  PubMed  Google Scholar 

  • Schutte J, Minna JD, Birrer MJ . (1989). Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms rat-1a cells as a single gene. Proc Natl Acad Sci USA 86: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrocks AD, Yang S-H, Galanis A . (2000). Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25: 448–453.

    Article  CAS  PubMed  Google Scholar 

  • She QB, Chen N, Bode AM, Flavell RA, Dong Z . (2002). Deficiency of c-Jun NH(2)terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 62: 1343–1348.

    CAS  PubMed  Google Scholar 

  • Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M . (1991). Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354: 494–496.

    Article  CAS  PubMed  Google Scholar 

  • Srinivas H, Juroske DM, Kalyankrishna S, Cody DD, Price RE, Xu XC et al. (2005). c-Jun N-terminal kinase contributes to aberrant retinoid signaling in lung cancer cells by phosphorylating and inducing proteosomal degradation of retinoic acid receptor α. Mol Cell Biol 25: 1054–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark AM, Tongers K, Maass N, Mehdorn HM, Held-Feindt J . (2005). Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131: 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Su GH, Hilgers W, Shekher MC, Tang DJ, Yeo CJ, Hruban RH et al. (1998). Alterations in pancreatic, biliary, and breast carcinomers support MKK4 as a genetically targeted tumor suppressor gene. Cancer Res 58: 2339–2342.

    CAS  PubMed  Google Scholar 

  • Su GH, Song JJ, Repasky EA, Schutte M, Kern SE . (2002). Mutation rate of MAP2K4/MKK4 in breast carcinoma. Hum Mutat 19: 81.

    Article  PubMed  Google Scholar 

  • Swat W, Fujikawa K, Ganiatsas S, Yang D, Xavier RJ, Harris NL et al. (1998). SEK1/MKK4 is required for maintenance of a normal peripheral lymphoid compartment but not for lymphocyte development. Immunity 8: 625–634.

    Article  CAS  PubMed  Google Scholar 

  • Takekawa M, Adachi M, Nakahata A, Nakayama I, Itoh F, Tsukuda H et al. (2000). p53-inducible wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19: 6517–6526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takekawa M, Tatebayashi K, Saito H . (2005). Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol Cell 18: 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Teng DH, Perry III WL, Hogan JK, Baumgard M, Bell R, Berry S et al. (1997). Human mitogen-activated protein kinase 4 as a candidate tumor suppressor. Cancer Res 57: 4177–4182.

    CAS  PubMed  Google Scholar 

  • Tournier C, Dong C, Turner TK, Jones SN, Flavell RA, Davis RJ . (2001). MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines. Genes Dev 15: 1419–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  PubMed  Google Scholar 

  • Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ . (1997). Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci USA 94: 7337–7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ . (1999). The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol 19: 1569–1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y et al. (2004). JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23: 1889–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlirova M, Jasper H, Bohmann D . (2005). Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci USA 102: 13123–13128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Griend DJ, Kocherginsky M, Hickson JA, Stadler WM, Lin A, Rinker-Schaeffer CW . (2005). Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 65: 10984–10991.

    Article  CAS  PubMed  Google Scholar 

  • Ventura JJ, Kennedy NJ, Flavell RA, Davis RJ . (2004). JNK regulates autocrine expression of TGF-β1. Mol Cell 15: 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Nakagawa K, Watanabe T, Nishitai G, Seo J, Kishimoto H et al. (2001). Impaired synergistic activation of stress-activated protein kinase SAPK/JNK in mouse embryonic stem cells lacking SEK1/MKK4. J Biol Chem 276: 30892–30897.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Pan Y, Dai JL . (2004). Evidence of MKK4 pro-oncogenic activity in breast and pancreatic tumors. Oncogene 23: 5978–5985.

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh AJ . (2006). The JIP family of MAP kinase scaffold proteins. Biochem Soc Trans 34: 828–832.

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Wu Z, Su B, Murray B, Karin M . (1998). JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 12: 3369–3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao L, Lang W . (2000). A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells. Cancer Res 60: 400–408.

    CAS  PubMed  Google Scholar 

  • Xin W, Yun KJ, Ricci F, Zahurak M, Qiu W, Su GH et al. (2004). MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunohistochemistry and relationship to disease course. Clin Cancer Res 10: 8516–8520.

    Article  CAS  PubMed  Google Scholar 

  • Xiu M, Kim J, Sampson E, Huang CY, Davis RJ, Paulson KE et al. (2003). The transcriptional repressor HBP1 is a target of the p38 mitogen-activated protein kinase pathway in cell cycle regulation. Mol Cell Biol 23: 8890–8901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Yoshioka K, Yoshimura D, Tominaga Y, Nishioka T, Ito M et al. (2003a). In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J Biol Chem 278: 48422–48433.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Kukekov NV, Greene LA . (2003b). POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 22: 252–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada SD, Hickson JA, Hrobowski Y, Vander Griend DJ, Benson D, Montag A et al. (2002). Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Res 62: 6717–6723.

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ . (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469–8478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ et al. (1997a). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870.

    Article  CAS  PubMed  Google Scholar 

  • Yang DD, Tournier C, Wysk M, Lu HT, Xu J, Davis RJ et al. (1997b). Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proc Natl Acad Sci USA 94: 3004–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YM, Bost F, Charbono W, Dean N, McKay R, Rhim JS et al. (2003). c-Jun NH(2)-terminal kinase mediates proliferation and tumor growth of human prostate carcinoma. Clin Cancer Res 9: 391–401.

    CAS  PubMed  Google Scholar 

  • Yashar BM, Kelley C, Yee K, Errede B, Zon LI . (1993). Novel Members of the mitogen-activated protein kinase activator family in Xenopus laevis. Mol Cell Biol 13: 5738–5748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida BA, Dubauskas Z, Chekmareva MA, Christiano TR, Stadler WM, Rinker-Schaeffer CW . (1999). Mitogen-activated protein kinase kinase 4/stress-activated protein/ERK kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 59: 5483–5487.

    CAS  PubMed  Google Scholar 

  • Yoshida S, Fukino K, Harada H, Nagai H, Imoto I, Inazawa J et al. (2001). The c-Jun NH2-terminal kinase3 (JNK3) gene: genomic structure, chromosomal assignment, and loss of expression in brain tumors. J Hum Genet 46: 182–187.

    Article  CAS  PubMed  Google Scholar 

  • Zacchi P, Gostissa M, Uchida T, Salvagno C, Avolio E, Volinia S et al. (2002). The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419: 853–857.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G et al. (2002). The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419: 849–853.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Sharrocks and S-H Yang for comments on the manuscript. AJW is a Lister Institute-Jenner Research Fellow. RJD is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitmarsh, A., Davis, R. Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene 26, 3172–3184 (2007). https://doi.org/10.1038/sj.onc.1210410

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210410

Keywords

This article is cited by

Search

Quick links