Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TBP-1 protects the human oncosuppressor p14ARF from proteasomal degradation

Abstract

The p14ARF tumor suppressor is a key regulator of cellular proliferation, frequently inactivated in human cancer. The mechanisms that regulate alternative reading frame (ARF) turnover have been obscure for long time, being ARF a relatively stable protein. Recently, it has been described that its degradation depends, at least in part, on the proteasome and that it can be subjected to N-terminal ubiquitination. We have previously reported that ARF protein levels are regulated by TBP-1 (Tat-Binding Protein 1), a multifunctional protein, component of the regulatory subunit of the proteasome, involved in different cellular processes. Here we demonstrate that the stabilization effect exerted by TBP-1 requires an intact N-terminal 39 amino acids in ARF and occurs independently from N-terminal ubiquitination of the protein. Furthermore, we observed that ARF can be degraded in vitro by the 20S proteasome, in the absence of ubiquitination and this effect can be counteracted by TBP-1. These observations seem relevant in the comprehension of the regulation of ARF metabolism as, among the plethora of cellular ARF's interactors already identified, only NPM/B23 and TBP-1 appear to be involved in the control of ARF intracellular levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bertwistle D, Sugimoto M, Sherr CJ . (2004). Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24: 985–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RK . (2001). Defining the molecular basis of Arf and Hdm2 interactions. J Mol Biol 314: 263–277.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sharp ZD, Lee WH . (1997). HEC binds to the seventh regulatory subunit of the 26 S proteasome and modulates the proteolysis of mitotic cyclins. J Biol Chem 272: 24081–24087.

    Article  CAS  PubMed  Google Scholar 

  • Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R et al. (2005). Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 25: 8874–8886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colucci-D'Amato GL, D'Alessio A, Califano D, Calì G, Rizzo C, Nitsch L et al. (2000). Abrogation of nerve growth factor-induced terminal differentiation by ret oncogene involves perturbation of nuclear translocation of ERK. J Biol Chem 275: 19306–19314.

    Article  CAS  PubMed  Google Scholar 

  • Corn PG, McDonald III R, Herman JG, El-Deiry WS . (2003). Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel–Lindau protein. Nat Genet 35: 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher SJ, Kefford RF, Rizos H . (2006). The ARF tumor suppressor. Int J Biochem Cell Biol 38: 1637–1641.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez F, Delahodde A, Kodadek T, Johnston SA . (2002). Enforced expression of p14ARF induces p53-dependent cell cycle arrest but not apoptosis. Science 296: 548–550.

    Article  CAS  PubMed  Google Scholar 

  • Itahana K, Bhat KP, Jin A, Ithana Y, Hawke D, Kobayashi R et al. (2003). Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 12: 1151–1164.

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Lin Z, Liang D, Fath D, Sang N, Caro J . (2006). Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1alpha. Mol Cell Biol 26: 2019–2027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW et al. (2005). Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25: 1258–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ . (2004). N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes and Dev 18: 1862–1874.

    Article  CAS  PubMed  Google Scholar 

  • Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM . (2002). A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416: 763–767.

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Corboy MJ, DeMartino GN, Thomas PJ . (2003). Endoproteolytic activity of the proteasome. Science 299: 408–411.

    Article  CAS  PubMed  Google Scholar 

  • Lohrum MA, Ashcroft M, Kubbutat MH, Vousden KH . (2000). Identification of a cryptic nucleolar-localization signal in MDM2. Curr Biol 10: 539–540.

    Article  CAS  PubMed  Google Scholar 

  • Paliwal S, Pande S, Kovi RC, Sharpless NE, Bardeesy N, Grossman SR . (2006). Targeting of C-terminal binding protein (CtBP) by ARF results in p53-independent apoptosis. Mol Cell Biol 26: 2360–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park BW, O'Rourke DM, Wang Q, Davis JG, Post A, Qian X et al. (1999). Induction of the Tat-binding protein 1 gene accompanies the disabling of oncogenic erbB receptor tyrosine kinases. Proc Natl Acad Sci USA 96: 6434–6438.

    Article  CAS  PubMed  Google Scholar 

  • Pollice A, Nasti V, Ronca R, Vivo M, Lo Iacono M, Calogero R et al. (2004). Functional and physical interaction of the human ARF tumor suppressor with Tat-binding Protein-1. J Biol Chem 279: 6345–6353.

    Article  CAS  PubMed  Google Scholar 

  • Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M et al. (2006). A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 22: 463–475.

    Article  CAS  PubMed  Google Scholar 

  • Rodway H, Llanos S, Rowe J, Peters G . (2004). Stability of nucleolar versus non-nucleolar forms of human p14(ARF). Oncogene 23: 6186–6192.

    Article  CAS  PubMed  Google Scholar 

  • Russell SJ, Reed SH, Huang W, Friedberg EC, Johnston SA . (1999). The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol Cell 3: 687–695.

    Article  CAS  PubMed  Google Scholar 

  • Sdek P, Ying H, Chang DL, Qiu W, Zheng H, Touitou R et al. (2005). MDM2 promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma protein. Mol Cell 20: 699–708.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE . (2004). Ink4a/Arf links senescence and aging. Exp Gerontol 39: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE . (2005). INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576: 22–38.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W . (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015–1068.

    Article  CAS  PubMed  Google Scholar 

  • Weber JD, Kuo ML, Weber JD, Kuo ML, Bothner B, DiGiammarino EL et al. (2000). Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol and Cell Biol 20: 2517–2528.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B Majello and C Sherr for generously providing some plasmids used in this study. This work was supported by grants from Telethon (GGP030326), MIUR and AIRC to G La Mantia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G La Mantia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollice, A., Sepe, M., Villella, V. et al. TBP-1 protects the human oncosuppressor p14ARF from proteasomal degradation. Oncogene 26, 5154–5162 (2007). https://doi.org/10.1038/sj.onc.1210313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210313

Keywords

This article is cited by

Search

Quick links