Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTTG and PBF repress the human sodium iodide symporter

Abstract

The ability of the thyroid to accumulate iodide provides the basis for radioiodine ablation of differentiated thyroid cancers and their metastases. Most thyroid tumours exhibit reduced iodide uptake, although the mechanisms accounting for this remain poorly understood. Pituitary tumour transforming gene (PTTG) is a proto-oncogene implicated in the pathogenesis of thyroid tumours. We now show that PTTG and its binding factor PBF repress expression of sodium iodide symporter (NIS) messenger RNA (mRNA), and inhibit iodide uptake. This process is mediated at least in part through fibroblast growth factor-2. In detailed studies of the NIS promoter in rat FRTL-5 cells, PTTG and PBF demonstrated specific inhibition of promoter activity via the human upstream enhancer element (hNUE). Within this 1 kb element, a complex PAX8-upstream stimulating factor 1 (USF1) response element proved critical both to basal promoter activity and to PTTG and PBF repression of NIS. In particular, repression by PTTG was contingent upon the USF1, but not the PAX8, site. Finally, in human primary thyroid cells, PTTG and PBF similarly repressed the NIS promoter via hNUE. Taken together, our data suggest that the reported overexpression of PTTG and PBF in differentiated thyroid cancer has profound implications for activity of the NIS gene, and hence significantly impacts upon the efficacy of radioiodine treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ambesi-Impiombato FS, Parks LA, Coon HG . (1980). Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA 77: 3455–3459.

    Article  CAS  Google Scholar 

  • Arturi F, Russo D, Bidart JM, Scarpelli D, Schlumberger M, Filetti S . (2001). Expression pattern of the pendrin and sodium/iodide symporter genes in human thyroid carcinoma cell lines and human thyroid tumors. Eur J Endocrinol 145: 129–135.

    Article  CAS  Google Scholar 

  • Arturi F, Russo D, Giuffrida D, Schlumberger M, Filetti S . (2000). Sodium-iodide symporter (NIS) gene expression in lymph-node metastases of papillary thyroid carcinomas. Eur J Endocrinol 143: 623–627.

    Article  CAS  Google Scholar 

  • Behr M, Schmitt TL, Espinoza CR, Loos U . (1998). Cloning of a functional promoter of the human sodium/iodide-symporter gene. Biochem J 331 (Pt 2): 359–363.

    Article  CAS  Google Scholar 

  • Boelaert K, Franklyn JA . (2003). Sodium iodide symporter: a novel strategy to target breast, prostate, and other cancers? Lancet 361: 796–797.

    Article  CAS  Google Scholar 

  • Boelaert K, McCabe CJ, Tannahill LA, Gittoes NJ, Holder RL, Watkinson JC et al. (2003a). Pituitary tumor transforming gene and fibroblast growth factor-2 expression: potential prognostic indicators in differentiated thyroid cancer. J Clin Endocrinol Metab 88: 2341–2347.

    Article  CAS  Google Scholar 

  • Boelaert K, Tannahill LA, Bulmer JN, Kachilele S, Chan SY, Gittoes NJL et al. (2003b). A potential role for PTTG/securin in the developing human fetal brain. FASEB J 17: 1631–1639.

    Article  CAS  Google Scholar 

  • Boelaert K, Yu R, Tannahill LA, Stratford AL, Khanim FL, Eggo MC et al. (2004). PTTG's C-terminal PXXP motifs modulate critical cellular processes in vitro. J Mol Endocrinol 33: 663–677.

    Article  CAS  Google Scholar 

  • Caillou B, Troalen F, Baudin E, Talbot M, Filetti S, Schlumberger M et al. (1998). Na+/I- symporter distribution in human thyroid tissues: an immunohistochemical study. J Clin Endocrinol Metab 83: 4102–4106.

    CAS  PubMed  Google Scholar 

  • Castro MR, Bergert ER, Beito TG, Roche PC, Ziesmer SC, Jhiang SM et al. (1999). Monoclonal antibodies against the human sodium iodide symporter: utility for immunocytochemistry of thyroid cancer. J Endocrinol 163: 495–504.

    Article  CAS  Google Scholar 

  • Chien W, Pei L . (2000). A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor-transforming gene product. J Biol Chem 275: 19422–19427.

    Article  CAS  Google Scholar 

  • Chun JT, Di DV, D'Andrea B, Zannini M, Di Lauro R . (2004). The CRE-like element inside the 5′-upstream region of the rat sodium/iodide symporter gene interacts with diverse classes of b-Zip molecules that regulate transcriptional activities through strong synergy with Pax-8. Mol Endocrinol 18: 2817–2829.

    Article  CAS  Google Scholar 

  • Cocks HC, Thompson S, Turner FE, Logan A, Franklyn JA, Watkinson JC et al. (2003). Role and regulation of the fibroblast growth factor axis in human thyroid follicular cells. Am J Physiol Endocrinol Metab 285: E460–E469.

    Article  CAS  Google Scholar 

  • Dai G, Levy O, Carrasco N . (1996). Cloning and characterization of the thyroid iodide transporter. Nature 379: 458–460.

    Article  CAS  Google Scholar 

  • Dohan O, De LV, Paroder V, Riedel C, Artani M, Reed M et al. (2003). The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24: 48–77.

    Article  CAS  Google Scholar 

  • Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M et al. (1998). hPTTG, a human homologue of rat PTTG, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17: 2187–2193.

    Article  CAS  Google Scholar 

  • Eggo MC, Hopkins JM, Franklyn JA, Johnson GD, Sanders DS, Sheppard MC . (1995). Expression of fibroblast growth factors in thyroid cancer. J Clin Endocrinol Metab 80: 1006–1011.

    CAS  PubMed  Google Scholar 

  • Eggo MC, King WJ, Black EG, Sheppard MC . (1996). Functional human thyroid cells and their insulin-like growth factor- binding proteins: regulation by thyrotropin, cyclic 3′,5′ adenosine monophosphate, and growth factors. J Clin Endocrinol Metab 81: 3056–3062.

    CAS  PubMed  Google Scholar 

  • Heaney AP, Nelson V, Fernando M, Horwitz G . (2001). Transforming events in thyroid tumorigenesis and their association with follicular lesions. J Clin Endocrinol Metab 86: 5025–5032.

    Article  CAS  Google Scholar 

  • Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed S . (2000). Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 355: 716–719.

    Article  CAS  Google Scholar 

  • Ishikawa H, Heaney AP, Yu R, Horwitz GA, Melmed S . (2001). Human pituitary tumor-transforming gene induces angiogenesis. J Clin Endocrinol Metab 86: 867–874.

    CAS  PubMed  Google Scholar 

  • Jhiang SM, Cho JY, Ryu KY, DeYoung BR, Smanik PA, McGaughy VR et al. (1998). An immunohistochemical study of Na+/I- symporter in human thyroid tissues and salivary gland tissues. Endocrinology 139: 4416–4419.

    Article  CAS  Google Scholar 

  • Kim DS, Franklyn JA, Boelaert K, Eggo MC, Watkinson JC, McCabe CJ . (2006). Pituitary tumor transforming gene (PTTG) stimulates thyroid cell proliferation via a vascular endothelial growth factor/kinase insert domain receptor/inhibitor of DNA binding-3 autocrine pathway. J Clin Endocrinol Metab 91: 4603–4611.

    Article  CAS  Google Scholar 

  • Kim DS, Pemberton H, Stratford AL, Buelaert K, Watkinson JC, Lopes V et al. (2005). Pituitary tumour transforming gene (PTTG) induces genetic instability in thyroid cells. Oncogene 24: 4861–4866.

    Article  CAS  Google Scholar 

  • Kogai T, Endo T, Saito T, Miyazaki A, Kawaguchi A, Onaya T . (1997). Regulation by thyroid-stimulating hormone of sodium/iodide symporter gene expression and protein levels in FRTL-5 cells. Endocrinology 138: 2227–2232.

    Article  CAS  Google Scholar 

  • Kogai T, Schultz JJ, Johnson LS, Huang M, Brent GA . (2000). Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line. Proc Natl Acad Sci USA 97: 8519–8524.

    Article  CAS  Google Scholar 

  • Lazar V, Bidart JM, Caillou B, Mahe C, Lacroix L, Filetti S et al. (1999). Expression of the Na+/I- symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab 84: 3228–3234.

    CAS  PubMed  Google Scholar 

  • Lin X, Ryu KY, Jhiang SM . (2004). Cloning of the 5′-flanking region of mouse sodium/iodide symporter and identification of a thyroid-specific and TSH-responsive enhancer. Thyroid 14: 19–27.

    Article  CAS  Google Scholar 

  • Liou MJ, Lin JD, Chan EC, Liu FH, Chao TC, Weng HF . (2000). Detection of mRNA of sodium iodide symporter in benign and malignant human thyroid tissues. Cancer Lett 160: 75–80.

    Article  CAS  Google Scholar 

  • McCabe CJ, Boelaert K, Tannahill LA, Heaney AP, Stratford AL, Khaira JS et al. (2002). Vascular endothelial growth factor (VEGF), its receptor KDR and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab 87: 4238–4244.

    Article  CAS  Google Scholar 

  • McCabe CJ, Khaira JS, Boelaert K, Heaney AP, Tannahill LA, Hussain S et al. (2003). Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin Endocrinol (Oxford) 58: 141–150.

    Article  CAS  Google Scholar 

  • McCabe CJ . (2001). Genetic targets for the treatment of pituitary adenomas – focus on the pituitary tumor transforming gene. Curr Opinion Pharmacol 1: 620–625.

    Article  CAS  Google Scholar 

  • Park HJ, Kim JY, Park KY, Gong G, Hong SJ, Ahn IM . (2000). Expressions of human sodium iodide symporter mRNA in primary and metastatic papillary thyroid carcinomas. Thyroid 10: 211–217.

    Article  CAS  Google Scholar 

  • Pei L, Melmed S . (1997). Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 11: 433–441.

    Article  CAS  Google Scholar 

  • Pei L . (2000). Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem 275: 31191–31198.

    Article  CAS  Google Scholar 

  • Pei L . (2001). Identification of c-myc as a down-stream target for pituitary tumor-transforming gene. J Biol Chem 276: 8484–8491.

    Article  CAS  Google Scholar 

  • Puri R, Tousson A, Chen L, Kakar SS . (2001). Molecular cloning of pituitary tumor transforming gene 1 from ovarian tumors and its expression in tumors. Cancer Lett 163: 131–139.

    Article  CAS  Google Scholar 

  • Ramsden JD, Cocks HC, Shams M, Nijjar S, Watkinson JC, Sheppard MC et al. (2001). Tie-2 is expressed on thyroid follicular cells, is increased in goiter, and is regulated by thyrotropin through cyclic adenosine 3′,5′-monophosphate. J Clin Endocrinol Metab 86: 2709–2716.

    CAS  PubMed  Google Scholar 

  • Ringel MD, Anderson J, Souza SL, Burch HB, Tambascia M, Shriver CD, Tuttle Reuben Maitland. (2001). Expression of the sodium iodide symporter and thyroglobulin genes are reduced in papillary thyroid cancer. Mod Pathol 14: 289–296.

    Article  CAS  Google Scholar 

  • Romero F, Multon MC, Ramos-Morales F, Dominguez A, Bernal JA, Pintor-Toro JA et al. (2001). Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res 29: 1300–1307.

    Article  CAS  Google Scholar 

  • Ryu KY, Senokozlieff ME, Smanik PA, Wong MG, Siperstein AE, Duh QY et al. (1999). Development of reverse transcription-competitive polymerase chain reaction method to quantitate the expression levels of human sodium iodide symporter. Thyroid 9: 405–409.

    Article  CAS  Google Scholar 

  • Ryu KY, Tong Q, Jhiang SM . (1998). Promoter characterization of the human Na+/I- symporter. J Clin Endocrinol Metab 83: 3247–3251.

    CAS  PubMed  Google Scholar 

  • Saez C, Martinez-Brocca MA, Castilla C, Soto A, Navarro E, Tortolero M et al. (2006). Prognostic significance of hPTTG immunohistochemical expression in differentiated thyroid cancer. J Clin Endocrinol Metab 91: 1404–1409.

    Article  CAS  Google Scholar 

  • Saito T, Endo T, Kawaguchi A, Ikeda M, Katoh R, Kawaoi A et al. (1998). Increased expression of the sodium/iodide symporter in papillary thyroid carcinomas. J Clin Invest 101: 1296–1300.

    Article  CAS  Google Scholar 

  • Schmitt TL, Espinoza CR, Loos U . (2001). Transcriptional regulation of the human sodium/iodide symporter gene by Pax8 and TTF-1. Exp Clin Endocrinol Diabetes 109: 27–31.

    Article  CAS  Google Scholar 

  • Shibata Y, Haruki N, Kuwabara Y, Nishiwaki T, Kato J, Shinoda N et al. (2002). Expression of PTTG (pituitary tumor transforming gene) in esophageal cancer. Jpn J Clin Oncol 32: 233–237.

    Article  Google Scholar 

  • Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL et al. (1996). Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 226: 339–345.

    Article  CAS  Google Scholar 

  • Smanik PA, Ryu KY, Theil KS, Mazzaferri EL, Jhiang SM . (1997). Expression, exon-intron organization, and chromosome mapping of the human sodium iodide symporter. Endocrinology 138: 3555–3558.

    Article  CAS  Google Scholar 

  • Spitzweg C, Joba W, Morris JC, Heufelder AE . (1999). Regulation of sodium iodide symporter gene expression in FRTL-5 rat thyroid cells. Thyroid 9: 821–830.

    Article  CAS  Google Scholar 

  • Stratford AL, Boelaert K, Tannahill LA, Kim DS, Warfield A, Eggo MC et al. (2005). Pituitary tumor transforming gene binding factor: a novel transforming gene in thyroid tumorigenesis. J Clin Endocrinol Metab 90: 4341–4349.

    Article  CAS  Google Scholar 

  • Taki K, Kogai T, Kanamoto Y, Hershman JM, Brent GA . (2002). A thyroid-specific far-upstream enhancer in the human sodium/iodide symporter gene requires Pax-8 binding and cyclic adenosine 3′,5′-monophosphate response element-like sequence binding proteins for full activity and is differentially regulated in normal and thyroid cancer cells. Mol Endocrinol 16: 2266–2282.

    Article  CAS  Google Scholar 

  • Tanaka K, Otsuki T, Sonoo H, Yamamoto Y, Udagawa K, Kunisue H et al. (2000). Semi-quantitative comparison of the differentiation markers and sodium iodide symporter messenger ribonucleic acids in papillary thyroid carcinomas using RT–PCR. Eur J Endocrinol 142: 340–346.

    Article  CAS  Google Scholar 

  • Yaspo ML, Aaltonen J, Horelli-Kuitunen N, Peltonen L, Lehrach H . (1998). Cloning of a novel human putative type Ia integral membrane protein mapping to 21q22.3. Genomics 49: 133–136.

    Article  CAS  Google Scholar 

  • Yu R, Melmed S . (2001). Oncogene activation in pituitary tumors. Brain Pathol 11: 328–341.

    Article  CAS  Google Scholar 

  • Yu R, Ren SG, Horwitz GA, Wang Z, Melmed S . (2000). Pituitary tumor transforming gene (PTTG) regulates placental JEG-3 cell division and survival: evidence from live cell imaging. Mol Endocrinol 14: 1137–1146.

    Article  CAS  Google Scholar 

  • Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD et al. (1999a). Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84: 761–767.

    Article  CAS  Google Scholar 

  • Zhang X, Horwitz GA, Prezant TR, Valentini A, Nakashima M, Bronstein MD et al. (1999b). Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol 13: 156–166.

    Article  CAS  Google Scholar 

  • Zou H, McGarry TJ, Bernal T, Kirschner MW . (1999). Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285: 418–422.

    Article  CAS  Google Scholar 

  • Zur A, Brandeis M . (2001). Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J 20: 792–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust, the Medical Research Council (UK), the Endowment Fund of the Former United Birmingham Hospitals and the Marjorie Robinson Fund. We thank Dr John Morris (Mayo Clinic, Rochester, USA) and Dr Nancy Carrasco (Albert Einstein College of Medicine, New York, USA) for the provision of NIS antibodies, and we acknowledge Roger Holder, Department of Statistics, University of Birmingham, for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J McCabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boelaert, K., Smith, V., Stratford, A. et al. PTTG and PBF repress the human sodium iodide symporter. Oncogene 26, 4344–4356 (2007). https://doi.org/10.1038/sj.onc.1210221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210221

Keywords

This article is cited by

Search

Quick links