Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

E2F regulates DDB2: consequences for DNA repair in Rb-deficient cells

Abstract

DDB2, a gene mutated in XPE patients, is involved in global genomic repair especially the repair of cyclobutane pyrimidine dimers (CPDs), and is regulated by p53 in human cells. We show that DDB2 is expressed in mouse tissues and demonstrate, using primary mouse epithelial cells, that mouse DDB2 is regulated by E2F transcription factors. Retinoblastoma (Rb), a tumor suppressor critical for the control of cell cycle progression, regulates E2F activity. Using Cre-Lox technology to delete Rb in primary mouse hepatocytes, we show that DDB2 gene expression increases, leading to elevated DDB2 protein levels. Furthermore, we show that endogenous E2F1 and E2F3 bind to DDB2 promoter and that treatment with E2F1-antisense or E2F1-small interfering RNA (siRNA) decreases DDB2 transcription, demonstrating that E2F1 is a transcriptional regulator for DDB2. This has consequences for global genomic repair: in Rb-null cells, where E2F activity is elevated, global DNA repair is increased and removal of CPDs is more efficient than in wild-type cells. Treatment with DDB2-siRNA decreases DDB2 expression and abolishes the repair phenotype of Rb-null cells. In summary, these results identify a new regulatory pathway for DDB2 by E2F, which does not require but is potentiated by p53, and demonstrate that DDB2 is involved in global repair in mouse epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Ensembl

References

  • Adimoolam S, Ford JM . (2003). p53 and DNA damage inducible expression of the xeroderma pigmentosum group C gene. DNA Repair (Amsterdam) 2: 947–954.

    Article  CAS  Google Scholar 

  • Attwooll C, Lazzerini DE, Helin K . (2004). The E2F family: specific functions and overlapping interests. EMBO J 23: 4709–4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berton TR, Mitchell DL, Guo R, Johnson DG . (2005). Regulation of epidermal apoptosis and DNA repair by E2F1 in response to ultraviolet B radiation. Oncogene 24: 2449–2460.

    Article  CAS  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Fitch ME, Cross IV, Ford JM . (2003a). p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo. Carcinogenesis 24: 843–850.

    Article  CAS  PubMed  Google Scholar 

  • Fitch ME, Nakajima S, Yasui A, Ford JM . (2003b). In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J Biol Chem 278: 46906–46910.

    Article  CAS  PubMed  Google Scholar 

  • Ford JM, Hanawalt PC . (1995). Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc Natl Acad Sci USA 92: 8876–8880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford JM, Hanawalt PC . (1997). Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 272: 28073–28080.

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W . (1995). DNA Repair and Mutagenesis. ASM Press: Washington, pp 283–366.

    Google Scholar 

  • Hayes S, Shiyanov P, Chen X, Raychaudhuri P . (1998). DDB, a putative DNA repair protein, can function as a transcriptional partner of E2F1. Mol Cell Biol 18: 240–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang BJ, Ford JM, Hanawalt PC, Chu G . (1999). Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci USA 96: 424–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang BJ, Toering S, Francke U, Chu G . (1998). p48 Activates a UV-damaged-DNA binding factor and is defective in xeroderma pigmentosum group E cells that lack binding activity. Mol Cell Biol 18: 4391–4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M et al. (2001). Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21: 4684–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizaki K, Ejima Y, Matsunaga T, Hara R, Sakamoto A, Ikenaga M et al. (1994). Increased UV-induced SCEs but normal repair of DNA damage in p53-deficient mouse cells. Int J Cancer 58: 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Lin GY, Paterson RG, Richardson CD, Lamb RA . (2000). The V protein of paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249: 189–200.

    Article  Google Scholar 

  • Mori T, Nakane M, Hattori TKN, Matsunaga T, Ihara M, Nikaido O . (1991). Selective regulation of T cell IL-5 synthesis by OM-01, JTE-711 and p38 MAP kinase inhibitor: independent control of Th2 cytokines, IL-4 and IL-5. Photochem Photobiol 54: 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Muller H, Helin K . (2000). The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta 1470: M1–M12.

    CAS  PubMed  Google Scholar 

  • Nag A, Bondar T, Shiv S, Raychaudhuri P . (2001). The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol Cell Biol 21: 6738–6747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols AF, Itoh T, Zolezzi F, Hutsell S, Linn S . (2003). Basal transcriptional regulation of human damage-specific DNA-binding protein genes DDB1 and DDB2 by Sp1, E2F, N-myc and NF1 elements. Nucleic Acids Res 31: 562–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiwaki Y, Kobayashi N, Imoto K, Iwamoto TA, Yamamoto A, Katsumi S et al. (2004). Trichothiodystrophy fibroblasts are deficient in the repair of ultraviolet-induced cyclobutane pyrimidine dimers and (6–4)photoproducts. J Invest Dermatol 122: 526–532.

    Article  CAS  PubMed  Google Scholar 

  • O'Connor DJ, Lam EW, Griffin S, Zhong S, Leighton LC, Burbidge SA et al. (1995). Physical and functional interactions between p53 and cell cycle co-operating transcription factors, E2F1 and DP1. EMBO J 14: 6184–6192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prost S, Bellamy CO, Cunningham DS, Harrison DJ . (1998a). Altered DNA repair and dysregulation of p53 in IRF-1 null hepatocytes. FASEB J 12: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Prost S, Ford JM, Taylor C, Doig J, Harrison DJ . (1998b). Hepatitis B x protein inhibits p53-dependent DNA repair in primary mouse hepatocytes. J Biol Chem 273: 33327–33332.

    Article  CAS  PubMed  Google Scholar 

  • Prost S, Sheahan S, Rannie D, Harrison DJ . (2001). Adenovirus-mediated Cre deletion of floxed sequences in primary mouse cells is an efficient alternative for studies of gene deletion. Nucleic Acids Res 29: E80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdie CA, Harrison DJ, Peter A, Dobbie L, White S, Howie SE et al. (1994). Tumour incidence, spectrum and ploidy in mice with a large deletion in the p53 gene. Oncogene 9: 603–609.

    CAS  PubMed  Google Scholar 

  • Ragimov N, Krauskopf A, Navot N, Rotter V, Oren M, Aloni Y . (1993). Wild-type but not mutant p53 can repress transcription initiation in vitro by interfering with the binding of basal transcription factors to the TATA motif. Oncogene 8: 1183–1193.

    CAS  PubMed  Google Scholar 

  • Sheahan S, Bellamy CO, Treanor L, Harrison DJ, Prost S . (2004). Additive effect of p53, p21 and Rb deletion in triple knockout primary hepatocytes. Oncogene 23: 1489–1497.

    Article  CAS  PubMed  Google Scholar 

  • Shiyanov P, Hayes SA, Donepudi M, Nichols AF, Linn S, Slagle BL et al. (1999). The naturally occurring mutants of DDB are impaired in stimulating nuclear import of the p125 subunit and E2F1-activated transcription. Mol Cell Biol 19: 4935–4943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens C, La Thangue NB . (2004). The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair (Amsterdam) 3: 1071–1079.

    Article  CAS  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan T, Chu G . (2002). p53 Binds and activates the xeroderma pigmentosum DDB2 gene in humans but not mice. Mol Cell Biol 22: 3247–3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Chu G . (2002). Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair (Amsterdam) 1: 601–616.

    Article  CAS  Google Scholar 

  • Vooijs M, te RH, van d V, Berns A . (2002). Tumor formation in mice with somatic inactivation of the retinoblastoma gene in interphotoreceptor retinol binding protein-expressing cells. Oncogene 21: 4635–4645.

    Article  CAS  PubMed  Google Scholar 

  • Wakasugi M, Kawashima A, Morioka H, Linn S, Sancar A, Mori T et al. (2002). DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. J Biol Chem 277: 1637–1640.

    Article  CAS  PubMed  Google Scholar 

  • Wang QE, Zhu Q, Wani G, Chen J, Wani AA . (2004). UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25: 1033–1043.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Wani MA, El Mahdy M, Wani AA . (2000). Decreased DNA repair efficiency by loss or disruption of p53 function preferentially affects removal of cyclobutane pyrimidine dimers from non-transcribed strand and slow repair sites in transcribed strand. J Biol Chem 275: 11492–11497.

    Article  CAS  PubMed  Google Scholar 

  • Zolezzi F, Linn S . (2000). Studies of the murine DDB1 and DDB2 genes. Gene 245: 151–159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Chris Bellamy for critical comments on the manuscript. The Rb-floxed (Rblox/lox) mice were a kind gift from Anton Berns (Netherlands Cancer Institute, Amsterdam) to whom we are very grateful. Many thanks to Toshio Mori for kindly providing us with the TDM-2 antibody. We are very grateful to S Sheahan for providing primers for E2F1 and E2F2, and antibodies against E2F2 and E2F3, without which we would not have been able to complete this study. This work was supported by a grant from the Melville Trust for the Care and Cure of Cancer to SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Prost.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prost, S., Lu, P., Caldwell, H. et al. E2F regulates DDB2: consequences for DNA repair in Rb-deficient cells. Oncogene 26, 3572–3581 (2007). https://doi.org/10.1038/sj.onc.1210151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210151

Keywords

This article is cited by

Search

Quick links